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1

Getting Started

Product Overview (p. 1-2) Introduces the Spline Toolbox™ product, and describes 
its intended use and its capabilities.

MATLAB® Splines (p. 1-4) Compares spline approximation using the MATLAB® 
spline command with the capabilities of the Spline 
Toolbox product.

Expected Background (p. 1-5) Describes the intended audience for this product.

Technical Conventions (p. 1-6) Describes conventions related to the use of vectors, and 
the naming of commands. See the “Glossary” for 
notational conventions.
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Product Overview
Spline Toolbox™ software contains versions of the essential MATLAB® 

programs of the B-spline package (extended to handle also vector-valued 
splines) as described in A Practical Guide to Splines, (Applied Math. Sciences 
Vol. 27, Springer Verlag, New York (1978), xxiv + 392p; revised edition (2001), 
xviii+346p), hereafter referred to as PGS. The toolbox makes it easy to create 
and work with piecewise-polynomial functions.

The typical use envisioned for this toolbox involves the construction and 
subsequent use of a piecewise-polynomial approximation. This construction 
would involve data fitting, but there is a wide range of possible data that could 
be fit. In the simplest situation, one is given points (ti,yi) and is looking for a 
piecewise-polynomial function f that satisfies f(ti) = yi, all i, more or less. An 
exact fit would involve interpolation, an approximate fit might involve 
least-squares approximation or the smoothing spline. But the function to be 
approximated may also be described in more implicit ways, for example as the 
solution of a differential or integral equation. In such a case, the data would be 
of the form (Af)(ti), with A some differential or integral operator. On the other 
hand, one might want to construct a spline curve whose exact location is less 
important than is its overall shape. Finally, in all of this, one might be looking 
for functions of more than one variable, such as tensor product splines.

Care has been taken to make this work as painless and intuitive as possible. In 
particular, the user need not worry about just how splines are constructed or 
stored for later use, nor need the casual user worry about such items as 
“breaks” or “knots” or “coefficients”. It is enough to know that each function 
constructed is just another variable that is freely usable as input (where 
appropriate) to many of the commands, including all commands beginning with 
fn, which stands for function. At times, it may be also useful to know that, 
internal to the toolbox, splines are stored in different forms, with the command 
fn2fm available to convert between forms.

At present, the toolbox supports two major forms for the representation of 
piecewise-polynomial functions, because each has been found to be superior to 
the other in certain common situations. The B-form is particularly useful 
during the construction of a spline, while the ppform is more efficient when the 
piecewise-polynomial function is to be evaluated extensively. These two forms 
are almost exactly the B-representation and the pp representation used in 
PGS.
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But, over the years, the Spline Toolbox product has gone beyond the programs 
in PGS. The toolbox now supports the ‘scattered translates’ form, or stform, in 
order to handle the construction and use of bivariate thin-plate splines, and 
also two ways to represent rational splines, the rBform and the rpform, in order 
to handle NURBS.

Splines can be very effective for data fitting because the linear systems to be 
solved for this are banded, hence the work needed for their solution, done 
properly, grows only linearly with the number of data points. In particular, the 
MATLAB sparse matrix facilities are used in the Spline Toolbox product when 
that is more efficient than the toolbox’s own equation solver, slvblk, which 
relies on the fact that some of the linear systems here are even almost block 
diagonal.

All polynomial spline construction commands are equipped to produce 
bivariate (or even multivariate) piecewise-polynomial functions as tensor 
products of the univariate functions used here, and the various fn... 
commands also work for these multivariate functions.

There are various examples, all accessible through the Demos tab in the 
MATLAB Help browser. You are strongly urged to have a look at some of them, 
or at the GUI splinetool, before attempting to use this toolbox, or even before 
reading on.
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MATLAB® Splines
The MATLAB® technical computing environment provides spline 
approximation via the command spline. If called in the form cs = 
spline(x,y), it returns the ppform of the cubic spline with break sequence x 
that takes the value y(i) at x(i), all i, and satisfies the not-a-knot end 
condition. In other words, the command cs = spline(x,y) gives the same 
result as the command cs = csapi(x,y) available in the Spline Toolbox™ 
product. But only the latter also works when x,y describe multivariate gridded 
data. In MATLAB, cubic spline interpolation to multivariate gridded data is 
provided by the command interpn(x1,...,xd,v,y1,...,yd,'spline') 
which returns values of the interpolating tensor product cubic spline at the grid 
specified by y1,...,yd.

Further, any of the Spline Toolbox fn... commands can be applied to the 
output of the MATLAB spline(x,y) command, with simple versions of the 
Spline Toolbox commands fnval, ppmak, fnbrk available directly in MATLAB, 
as the commands ppval, mkpp, unmkpp, respectively. 
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Expected Background
The Spline Toolbox™ product started out as an extension of the MATLAB® 
environment of interest to experts in spline approximation, to aid them in the 
construction and testing of new methods of spline approximation. Such people 
will have mastered the material in PGS.

However, the basic toolbox commands, for constructing and using spline 
approximations, are set up to be usable with no more knowledge than it takes 
to understand what it means to, say, construct an interpolant or a least squares 
approximant to some data, or what it means to differentiate or integrate a 
function.

With that in mind, there are sections, like Chapter 2, “Some Simple Examples”, 
that are meant even for the novice, while sections devoted to a detailed 
example, like the one on constructing a Chebyshev spline or on constructing 
and using tensor products, are meant for users interested in developing their 
own spline commands.

A “Glossary” at the end of this guide provides definitions of almost all the 
mathematical terms used in this document.
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Technical Conventions
• “Vectors” on page 1-6

• “Naming Conventions” on page 1-6

• “Using Spline Toolbox™ Functions” on page 1-7

Vectors
The Spline Toolbox™ product can handle vector-valued splines, i.e., splines 
whose values lie in Rd. Since MATLAB® started out with just one variable 
type, that of a matrix, there is even now some uncertainty about how to deal 
with vectors, i.e., lists of numbers. MATLAB sometimes stores such a list in a 
matrix with just one row, and other times in a matrix with just one column. In 
the first instance, such a 1-row matrix is called a row-vector; in the second 
instance, such a 1-column matrix is called a column-vector. Either way, these 
are merely different ways for storing vectors, not different kinds of vectors.

In this toolbox, vectors, i.e., lists of numbers, may also end up stored in a 1-row 
matrix or in a 1-column matrix, but with the following agreements.

A point in Rd, i.e., a d-vector, is always stored as a column vector. In particular, 
if you want to supply an n-list of d-vectors to one of the commands, you are 
expected to provide that list as the n columns of a matrix of size [d,n].

While other lists of numbers (e.g., a knot sequence or a break sequence) may be 
stored internally as row vectors, you may supply such lists as you please, as a 
row vector or a column vector.

Naming Conventions
Most of the Spline Toolbox commands in this toolbox have names that follow 
one of the following patterns:

cs... commands construct cubic splines (in ppform)

sp... commands construct splines in B-form

fn... commands operate on spline functions

..2.. commands convert something

..api commands construct an approximation by interpolation

..aps commands construct an approximation by smoothing
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..ap2 commands construct a least-squares approximation

...knt commands construct (part of) a particular knot sequence

...dem commands are demonstrations now reached via the Demos tag in the 
MATLAB Help browser.

Some of these naming conventions are the result of a discussion with Jörg 
Peters, then a graduate student in Computer Sciences at the University of 
Wisconsin-Madison.

Note  See the “Glossary” for information about notation used in this book.

Using Spline Toolbox™ Functions
For ease of use, most Spline Toolbox functions have default arguments. In the 
reference entry under Syntax, we usually first list the function with all 
necessary input arguments and then with all possible input arguments. When 
there is more than one optional argument, then, sometimes, but not always, 
their exact order is immaterial. When their order does matter, you have to 
specify every optional argument preceding the one(s) you are interested in. In 
this situation, you can specify the default value for an optional argument by 
using [] (the empty matrix) as the input for it. The description in the reference 
page tells you the default value for each optional input argument.

As in MATLAB, only the output arguments explicitly specified are returned to 
the user.
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Some Simple Examples

Introduction (p. 2-3) Sets the stage.

Cubic Spline Interpolation (p. 2-4) Introduces the data set used in most of these examples and 
applies cubic spline interpolation to it.

Periodic Data (p. 2-5) Shows how to enforce periodicity.

Other End Conditions (p. 2-6) Matches the slope at one end and the second derivative at 
the other.

General Spline Interpolation (p. 2-7) Discusses interpolation by splines of arbitrary order and 
with knots automatically chosen in dependence on the 
data sites.

Knot Choices (p. 2-9) Discusses ways for choosing the knots of the interpolating 
spline, as well as the use of repeated interpolation sites to 
achieve matching of values and derivatives (Hermite 
interpolation).

Smoothing (p. 2-10) Illustrates the smoothing spline and the choice of 
smoothing parameter.

Least Squares (p. 2-12) Shows the construction of a least-squares approximation 
by splines, including a data-dependent choice of the spline 
knots.

Using the Spline Fits (p. 2-13) Lists some of the operations that can be applied to a spline.

Vector-Valued Functions (p. 2-14) Illustrations of the use of vector-valued splines: 
constructing a spline curve that passes through a given 
sequence of points; computing the area enclosed by the 
spline curve; intersecting the spline curve with a straight 
line; plotting the solution of a system of ODEs.
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Fitting Values at N-D Grid (p. 2-16) Illustrates the interpolation to vector-valued data on a grid 
by constructing a spline surface approximation to a 
sphere; also shows how to project a spline surface onto a 
plane.

Fitting Values at Scattered 2-D Sites 
(p. 2-18)

Example of a thin-plate spline fit to scattered data in the 
plane.
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Introduction
These examples provide some simple ways to make use of the commands in this 
toolbox. More complicated examples are given in later sections. Other 
examples are available in the various demos, all of which can be reached by the 
Demos tab in the MATLAB® Help browser. In addition, the command 
splinetool provides a graphical user interface (GUI) for you to try several of 
the basic spline interpolation and approximation commands from this toolbox 
on your data; it even provides various instructive data sets.

Check the reference pages if you have specific questions about the use of the 
commands mentioned. Check the Glossary if you have specific questions about 
the terminology used; a look into the Index may help.
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Cubic Spline Interpolation
Suppose you want to interpolate to some smooth data, e.g., to 

rand('seed',6), x = (4*pi)*[0 1 rand(1,15)]; y = sin(x);

Then you could try the cubic spline interpolant obtained by

cs = csapi(x,y);

and plotted, along with the data, by

fnplt(cs); hold on, plot(x,y,'o'), set(gca,'Fontsize',16)
legend('cubic spline','data'), hold off

This produces a figure like the following. 

Figure 2-1:  Cubic Spline Interpolant to Some Smooth Data

This is, more precisely, the cubic spline interpolant with the not-a-knot end 
conditions, meaning that it is the unique piecewise cubic polynomial with two 
continuous derivatives with breaks at all interior data sites except for the 
leftmost and the rightmost one. It is the same interpolant as produced by the 
MATLAB® spline command, spline(x,y).
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Periodic Data
We know that the sine function is -periodic. To check how well our 
interpolant does on that score, we compute, e.g., the difference in the value of 
its first derivative at the two endpoints,

diff(fnval(fnder(cs),[0 4*pi]))
ans = -.0100

which is not so good. If you prefer to get an interpolant whose first and second 
derivatives at the two endpoints, 0 and 4*pi, match, use instead the command 
csape which permits specification of many different kinds of end conditions, 
including periodic end conditions. So, use instead

pcs = csape(x,y,'periodic');

for which we get

diff(fnval(fnder(pcs),[0 4*pi]))
ans = 0

as the difference of end slopes. Even the difference in end second derivatives is 
small:

diff(fnval(fnder(pcs,2),[0 4*pi]))
ans = -4.6074e-015

2π
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Other End Conditions
Other end conditions can be handled as well. For example,

cs = csape(x,[3,y,-4],[1 2]);

provides the cubic spline interpolant with breaks at the  and with its slope 
at the leftmost data site equal to 3, and its second derivative at the rightmost 
data site equal to -4. 

x i( )
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General Spline Interpolation
If you want to interpolate at sites other than the breaks and/or by splines other 
than cubic splines with simple knots, then you use the spapi command. In its 
simplest form, you would say

sp = spapi(k,x,y);

in which the first argument, k, specifies the order of the interpolating spline; 
this is the number of coefficients in each polynomial piece, i.e., 1 more than the 
nominal degree of its polynomial pieces. For example, the next figure shows a 
linear, a quadratic, and a quartic spline interpolant to our data, as obtained by 
the statements

sp2 = spapi(2,x,y); fnplt(sp2,2), hold on
sp3 = spapi(3,x,y); fnplt(sp3,2,'k--'), set(gca,'Fontsize',16)
sp5 = spapi(5,x,y); fnplt(sp5,2,'r-.'), plot(x,y,'o')
legend('linear','quadratic','quartic','data'), hold off

Figure 2-2:  Spline Interpolants of Various Orders to Smooth Data

Even the cubic spline interpolant obtained from spapi is different from the one 
provided by csapi and spline. To emphasize their difference, we compute and 
plot their second derivatives, as follows:

fnplt(fnder(spapi(4,x,y),2)), hold on, set(gca,'Fontsize',16)
fnplt(fnder(csapi(x,y),2),2,'k--'),plot(x,zeros(size(x)),'o')
legend('from spapi','from csapi','data sites'), hold off
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This gives the following graph:

Figure 2-3:  Second Derivative of Two Cubic Spline Interpolants to the Same 
Smooth Data

Since the second derivative of a cubic spline is a broken line, with vertices at 
the breaks of the spline, we can see clearly that csapi places breaks at the data 
sites, while spapi does not. 
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Knot Choices
It is, in fact, possible to specify explicitly just where the spline interpolant 
should have its breaks, using the command

sp = spapi(knots,x,y);

in which the sequence knots supplies, in a certain way, the breaks to be used. 
For example, recalling that we had chosen y to be sin(x), the command

ch = spapi(augknt(x,4,2),[x x],[y cos(x)]);

provides a cubic Hermite interpolant to the sine function, namely the piecewise 
cubic function, with breaks at all the x(i)’s, that matches the sine function in 
value and slope at all the x(i)’s. This makes the interpolant continuous with 
continuous first derivative but, in general, it has jumps across the breaks in its 
second derivative. Just how does this command know which part of the data 
value array [y cos(x)] supplies the values and which the slopes? Notice that 
the data site array here is given as [x x], i.e., each data site appears twice. Also 
notice that y(i) is associated with the first occurrence of x(i), and cos(x(i)) 
is associated with the second occurrence of x(i). The data value associated 
with the first appearance of a data site is taken to be a function value; the data 
value associated with the second appearance is taken to be a slope. If there 
were a third appearance of that data site, the corresponding data value would 
be taken as the second derivative value to be matched at that site. See Chapter 
5, “The B-form,” for a discussion of the command augknt used here to generate 
the appropriate “knot sequence”.
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Smoothing
What if the data are noisy? For example, suppose that the given values are

noisy = y + .3*(rand(size(x))-.5);

Then you might prefer to approximate instead. For example, you might try the 
cubic smoothing spline, obtained by the command

scs = csaps(x,noisy);

and plotted by

fnplt(scs,2), hold on, plot(x,noisy,'o'), set(gca,'Fontsize',16)
legend('smoothing spline','noisy data'), hold off

This produces a figure like this:

Figure 2-4:  Cubic Smoothing Spline to Noisy Data

If you don’t like the level of smoothing done by csaps(x,y), you can change it 
by specifying the smoothing parameter, p, as an optional third argument. 
Choose this number anywhere between 0 and 1. As p changes from 0 to 1, the 
smoothing spline changes, correspondingly, from one extreme, the least 
squares straight-line approximation to the data, to the other extreme, the 
“natural” cubic spline interpolant to the data. Since csaps returns the 
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smoothing parameter actually used as an optional second output, you could 
now experiment, as follows:

[scs,p] = csaps(x,noisy); fnplt(scs,2), hold on
fnplt(csaps(x,noisy,p/2),2,'k--'), set(gca,'Fontsize',16)
fnplt(csaps(x,noisy,(1+p)/2),2,'r:'), plot(x,noisy,'o')
legend('smoothing spline','more smoothed','less smoothed',...
'noisy data'), hold off

This produces the following picture.

Figure 2-5:  Noisy Data More or Less Smoothed

At times, you might prefer simply to get the smoothest cubic spline sp that is 
within a specified tolerance tol of the given data in the sense that 

norm(noisy - fnval(sp,x))^2 <= tol

This spline is provided by the command

sp = spaps(x,noisy,tol);
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Least Squares
If you prefer a least squares approximant, you can obtain it by the statement 

sp = spap2(knots,k,x,y);

in which both the knot sequence knots and the order k of the spline must be 
provided. 

The popular choice for the order is 4, and that gives you a cubic spline. If you 
have no clear idea of how to choose the knots, simply specify the number of 
polynomial pieces you want used. For example, 

sp = spap2(3,4,x,y); 

gives a cubic spline consisting of three polynomial pieces. If the resulting error 
is uneven, you might try for a better knot distribution by using newknt as 
follows: 

sp = spap2(newknt(sp),4,x,y);
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Using the Spline Fits
If f is one of these splines cs, ch, or sp so constructed, then, as we saw already, 
it can be displayed by the statement

fnplt(f) 

Its value at a is given by the statement 

fnval(f,a);

Its second derivative is constructed by the statement 

DDf = fnder(fnder(f));

or by the statement

DDf = fnder(f,2);

Its definite integral over the interval [a..b] is supplied by the statement 

diff(fnval(fnint(f),[a;b]));

and the difference between the spline in cs and the one in ch can be computed 
as

fncmb(cs,'-',sp);
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Vector-Valued Functions
The toolbox supports vector-valued splines. For example, if you want a spline 
curve through given planar points , then the statements

xy = [x;y]; df = diff(xy,1,2); 
t = cumsum([0, sqrt([1 1]*(df.*df))]); 
cv = csapi(t,xy);

provide such a spline curve, using chord-length parametrization and cubic 
spline interpolation with the not-a-knot end condition, as can be verified by the 
statements

fnplt(cv), hold on, plot(x,y,'o'), hold off

If you then wanted to know the area enclosed by this curve, you would want to 
evaluate the integral  , with  the point 
on the curve corresponding to the parameter value . For the spline curve in cv 
just constructed, this can be done exactly in one (somewhat complicated) 
command:

area = diff(fnval(fnint( ...
       fncmb(fncmb(cv,[0 1]),'*',fnder(fncmb(cv,[1 0]))) ...
                        ),fnbrk(cv,'interval')));

To explain, y=fncmb(cv,[0 1]) picks out the second component of the curve in 
cv, Dx=fnder(fncmb(cv,[1 0])) provides the derivative of the first 
component, and yDx=fncmb(y,'*',Dx) constructs their pointwise product. 
Then IyDx=fnint(yDx) constructs the indefinite integral of yDx and, finally, 
diff(fnval(IyDx,fnbrk(cv,'interval'))) evaluates that indefinite integral 
at the endpoints of the basic interval and then takes the difference of the 
second from the first value, thus getting the definite integral of yDx over its 
basic interval. Depending on whether the enclosed area is to the right or to the 
left as the curve point travels with increasing parameter, the resulting number 
is either positive or negative.

Further, all the values Y (if any) for which the point (X,Y) lies on the spline 
curve in cv just constructed can be obtained by the following (somewhat 
complicated) command:

Y = fnval(fncmb(cv,[0 1]), ...
         mean(fnzeros(fncmb(fncmb(cv,[1 0]),'-',X))));

x i( ) y i( ),( ) i 1 … n, ,=,

∫ y t( )dx t( ) ∫ y t( )Dx t( )dt= x t( ) y t( ),( )
t
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To explain: x = fncmb(cv,[1 0])  picks out the first component of the curve in 
cv; xmX = fncmb(x,'-',X) translates that component by X; t = 
mean(fnzeros(xmX)) provides all the parameter values for which xmX is zero, 
i.e., for which the first component of the curve equals X; y = fncmb(cv,[0,1]) 
picks out the second component of the curve in cv; and, finally, Y = fnval(y,t) 
evaluates that second component at those parameter sites at which the first 
component of the curve in cv equals X.

As another example of the use of vector-valued functions, suppose that you 
have solved the equations of motion of a particle in some specified force field in 
the plane, obtaining, at discrete times , the position 

as well as the velocity  stored in the 4-vector , 

as you would if, in the standard way, you had solved the equivalent first-order 
system numerically. Then the following statement, which uses cubic Hermite 
interpolation, will produce a plot of the particle path:

fnplt(spapi(augknt(t,4,2),t,reshape(z,2,2*n)))

tj t= j( ) j 1=, :n

x tj( ) y, tj( )( ) x· tj( ) y·, tj( )( ) z : j,( )
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Fitting Values at N-D Grid
Vector-valued splines are also used in the approximation to gridded data, in 
any number of variables, using tensor-product splines. The same 
spline-construction commands are used, only the form of the input differs. For 
example, if x is an m-vector, y is an n-vector, and z is an array of size [m,n], then 

cs = csapi({x,y},z);

describes a bicubic spline  satisfying for  , 
. Such a multivariate spline can be vector-valued. For example,

x = 0:4; y=-2:2; s2 = 1/sqrt(2);
z(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
z(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
z(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];
sph = csape({x,y},z,{'clamped','periodic'});
fnplt(sph), axis equal, axis off

gives a perfectly acceptable sphere. Its projection onto the -plane is 
plotted by

fnplt(fncmb(sph,[1 0 0; 0 0 1])), axis equal, axis off

Both plots are shown below.

Figure 2-6:  A Sphere Made by a 3-D-Valued Bivariate Tensor Product Spline

f f x i( ) y, j( )( ) z= i j,( ) i 1:m=
j 1:n=

x z,( )
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Figure 2-7:  Planar Projection of Spline Sphere in Figure 2-6
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Fitting Values at Scattered 2-D Sites
Tensor-product splines are good for gridded (bivariate and even multivariate) 
data. For work with scattered bivariate data, the toolbox provides the 
thin-plate smoothing spline. Suppose you have given data values y(j) at 
scattered data sites x(:,j), j=1:N, in the plane. To give a specific example,

n = 65; t = linspace(0,2*pi,n+1); 
x = [cos(t);sin(t)]; x(:,end) = [0;0];

provides 65 sites, namely 64 points equally spaced on the unit circle, plus the 
center of that circle. Here are corresponding data values, namely noisy values 
of the very nice function .

y = (x(1,:)+.5).^2 + (x(2,:)+.5).^2;
noisy = y + (rand(size(y))-.5)/3;

Then you can compute a reasonable approximation to these data by 

st = tpaps(x,noisy);

and plot the resulting approximation along with the noisy data by

fnplt(st); hold on
plot3(x(1,:),x(2,:),noisy,'wo','markerfacecolor','k')
hold off

and so produce the following picture:

g x( ) x 1( ) 1 2⁄+( )^2 x 2( ) 1 2⁄+( )^2+=



Fitting Values at Scattered 2-D Sites

2-19

Figure 2-8:  Thin-Plate Smoothing Spline Approximation to Noisy Data
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Splines: An Overview

Introduction (p. 3-2) Motivation and scope of this overview.

Polynomials vs. Splines (p. 3-3) Rationale for the use of piecewise polynomials, also known 
as splines.

ppform (p. 3-4) Formal description of the ppform.

B-form (p. 3-5) Formal description of the B-form.

Knot Multiplicity (p. 3-6) Discusses the interplay between knot multiplicity and 
smoothness of a spline in B-form.

B-Spline Properties (p. 3-7) Lists the basic properties of a B-spline, including its 
associated dual functional.

Constructive vs. Variational (p. 3-8) Relates and compares standard ways for constructing a 
spline satisfying certain conditions with the way splines 
occur naturally as constrained minimizers of certain 
functionals that measure the size of some derivative.

Multivariate Splines (p. 3-9) Discusses the tensor product construct for using 
univariate approximation methods for multivariate 
gridded data, as well as the use of thin-plate splines for the 
fitting to scattered data.

Rational Splines (p. 3-11) Description of rational splines and their rsforms.
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Introduction
This chapter is meant to provide a quick over-view of the mathematics that 
underlies the various commands in the Spline Toolbox™ product. In the 
process, the technical terms and notation used throughout this documentation 
(and in the online help for individual commands) are introduced. Another 
source of information about the latter is the Glossary.
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Polynomials vs. Splines
Polynomials are the approximating functions of choice when a smooth function 
is to be approximated locally. For example, the truncated Taylor series 

provides a satisfactory approximation for  if  is sufficiently smooth and  
is sufficiently close to . But if a function is to be approximated on a larger 
interval, the degree, , of the approximating polynomial may have to be chosen 
unacceptably large. The alternative is to subdivide the interval  of 
approximation into sufficiently small intervals , with 

, so that, on each such interval, a polynomial  of 

relatively low degree can provide a good approximation to . This can even be 
done in such a way that the polynomial pieces blend smoothly, i.e., so that the 
resulting patched or composite function  that equals  for 

, all , has several continuous derivatives. Any such smooth 

piecewise polynomial function is called a spline. I.J. Schoenberg coined this 
term since a twice continuously differentiable cubic spline with sufficiently 
small first derivative approximates the shape of a draftsman’s spline. 

There are two commonly used ways to represent a polynomial spline, the 
ppform and the B-form. In this toolbox, a spline in ppform is often referred to 
as a piecewise polynomial, while a piecewise polynomial in B-form is often 
referred to as a spline. This reflects the fact that piecewise polynomials and 
(polynomial) splines are just two different views of the same thing.

x a–( )i

i 0=

n

∑ Dif a( ) i!⁄

f x( ) f x
a

n
a..b[ ]

ξj..ξj 1+[ ]

a ξ1
… ξl 1+< < b= = pj

f

s x( ) pj x( )

x ξj ξj 1+[ ]∈ j
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ppform
The ppform of a polynomial spline of order  provides a description in terms of 
its breaks  and the local polynomial coefficients  of its  pieces. 

For example, a cubic spline is of order 4, corresponding to the fact that it 
requires four coefficients to specify a cubic polynomial. The ppform is 
convenient for the evaluation and other uses of a spline. 

k
ξ1 … ξl 1+, , cji l

pj x( ) x ξj–( )k i–

i 1=

k

∑= cji, j 1:l=
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B-form
The B-form has become the standard way to represent a spline during its 
construction, since the B-form makes it easy to build in smoothness 
requirements across breaks and leads to banded linear systems. The B-form 
describes a spline as a weighted sum

of B-splines of the required order , with their number, , at least as big as 
 plus the number of polynomial pieces that make up the spline. Here, 

 is the th B-spline of order  for the knot sequence 

. In particular,  is piecewise-polynomial of 

degree < , with breaks , is nonnegative, is zero outside the 

interval , and is so normalized that

Bj k,
j 1=

n

∑ aj

k n
k 1–

Bj k, B .|tj … tj k+, ,( )= j k

t1 t2
… tn k+≤ ≤ ≤ Bj k,

k tj … tj k+, ,

tj..tj k+[ ]

Bj k,
j 1=

n

∑ x( ) 1= on tk..tn 1+[ ]
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Knot Multiplicity
The multiplicity of the knots governs the smoothness, in the following way: If 
the number  occurs exactly  times in the sequence , then  
and its first  derivatives are continuous across the break , while the 

th derivative has a jump at . You can experiment with all these 
properties of the B-spline in a very visual and interactive way using the 
command bspligui.

τ r tj … tj k+, , Bj k,
k r– 1– τ

k r–( ) τ
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B-Spline Properties
Since  is nonzero only on the interval , the linear system for 
the B-spline coefficients of the spline to be determined, by interpolation or least 
squares approximation, or even as the approximate solution of some 
differential equation, is banded, making the solving of that linear system 
particularly easy. For example, if a spline s of order  with knot sequence 

 is to be constructed so that  for , then 
we are led to the linear system

for the unknown B-spline coefficients  in which each equation has at most  
nonzero entries.

Also, many theoretical facts concerning splines are most easily stated and/or 
proved in terms of B-splines. For example, it is possible to match arbitrary data 

at sites  uniquely by a spline of order  with knot sequence 

 if and only if  for all  (Schoenberg-Whitney 

Conditions). Computations with B-splines are facilitated by stable recurrence 
relations 

that are also of help in the conversion from B-form to ppform. The dual 
functional 

provides a useful expression for the jth B-spline coefficient of the spline s in 
terms of its value and derivatives at an arbitrary site  between  and , 
and with . It can be used to show that 

 is closely related to  on the interval , and seems the most 
efficient means for converting from ppform to B-form.

Bj k, tj..tj k+( )

k
t1 t2

… tn k+≤ ≤ ≤ s xi( ) yi= i 1 … n, ,=

Bj k, xi( )aj yi=
j 1=

n

∑ i 1:n=

aj k

x1
… xn< < k

t1 … tn k+, , Bj k, xj( ) 0≠ j

Bj k, x( )
x tj–

tj k 1–+ tj–
----------------------------= Bj k 1–, x( )

tj k+ x–
tj k+ tj 1+–
-----------------------------+ Bj 1+ k 1–, x( )

aj s( ) : D–( )k i– 1–

i k<
∑= ψj τ( )Dis τ( )

τ tj tj k+
ψj t( ) := tj 1+ t–( )… tj k 1–+ t–( ) k 1–( )!⁄

aj s( ) s tj..tj k+[ ]



3 Splines: An Overview

3-8

Constructive vs. Variational
The above constructive approach is not the only avenue to splines. In the 
variational approach, a spline is obtained as a best interpolant, e.g., as the 
function with smallest th derivative among all those matching prescribed 
function values at certain sites. As it turns out, among the many such splines 
available, only those that are piecewise-polynomials or, perhaps, 
piecewise-exponentials have found much use. Of particular practical interest is 
the smoothing spline  which, for given data  with , 
all , and given corresponding positive weights , and for given smoothing 
parameter p, minimizes 

over all functions  with  derivatives. It turns out that the smoothing spline 
 is a spline of order  with a break at every data site. The smoothing 

parameter, p, is chosen artfully to strike the right balance between wanting the 
error measure

small and wanting the roughness measure

small. The hope is that  contains as much of the information, and as little of 
the supposed noise, in the data as possible. One approach to this (used in 
spaps) is to make  as small as possible subject to the condition that 

 be no bigger than a prescribed tolerance. For computational reasons, 
spaps uses the (equivalent) smoothing parameter , i.e., 
minimizes . Also, it is useful at times to use the more flexible 
roughness measure

with  a suitable positive weight function.

m
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p wi
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Multivariate Splines
Multivariate splines can be obtained from univariate splines by the tensor 
product construct. For example, a trivariate spline in B-form is given by

with  univariate B-splines. Correspondingly, this spline is of 
order  in , of order  in , and of order  in . Similarly, the ppform of a 
tensor-product spline is specified by break sequences in each of the variables 
and, for each hyper-rectangle thereby specified, a coefficient array. Further, as 
in the univariate case, the coefficients may be vectors, typically 2-vectors or 
3-vectors, making it possible to represent, e.g., certain surfaces in R3.

A very different bivariate spline is the thin-plate spline. This is a function of 
the form

with  the thin-plate spline basis function, and  denoting 
the Euclidean length of the vector . Here, for convenience, we denote the 
independent variable by , but  is now a vector whose two components,  
and , play the role of the two independent variables earlier denoted  
and . Correspondingly, the sites  are points in .

Thin-plate splines arise as bivariate smoothing splines, meaning a thin-plate 
spline minimizes

over all sufficiently smooth functions . Here, the  are data values given at 
the data sites , p is the smoothing parameter, and  denotes the partial 
derivative of  with respect to . The integral is taken over the entire . 
The upper summation limit, , reflects the fact that 3 degrees of freedom 
of the thin-plate spline are associated with its polynomial part.
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Thin-plate splines are functions in stform, meaning that, up to certain 
polynomial terms, they are a weighted sum of arbitrary or scattered translates 

 of one fixed function, . This so-called basis function for the 
thin-plate spline is special in that it is radially symmetric, meaning that  
only depends on the Euclidean length, , of . For that reason, thin-plate 
splines are also known as RBFs or radial basis functions. See Chapter 8, “The 
stform,” for more information.

ψ . c–( ) ψ
ψ x( )

x x
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Rational Splines
A rational spline is any function of the form r(x) = s(x)/w(x), with both s and w 
splines and, in particular, w a scalar-valued spline, while s often is 
vector-valued.

Rational splines are attractive since it is possible to describe various basic 
geometric shapes, like conic sections, exactly as the range of a rational spline. 
For example, a circle can so be described by a quadratic rational spline with 
just two pieces.

In this toolbox, there is the additional requirement that both s and w be of the 
same form and even of the same order, and with the same knot or break 
sequence. This makes it possible to store the rational spline r as the ordinary 
spline R whose value at x is the vector [s(x);w(x)]. Depending on whether the 
two splines are in B-form or ppform, such a representation is called here the 
rBform or the rpform of such a rational spline.

It is easy to obtain r from R. For example, if v is the value of R at x, then 
v(1:end-1)/v(end) is the value of r at x. There are corresponding ways to 
express derivatives of r in terms of derivatives of R. 
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The ppform

Introduction (p. 4-2) Sets the stage by introducing the local polynomial 
coefficients and breaks of a piecewise polynomial function 
and defining its order.

ppform (p. 4-3) Formal definition of the ppform.

Construction (p. 4-4) Use of ppmak to put together the ppform.

Available Commands (p. 4-5) A listing of the fn... commands applicable to a spline in 
ppform, followed by an example illustrating their use.
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Introduction
A univariate piecewise polynomial  is specified by its break sequence breaks 
and the coefficient array coefs of the local power form (see Equation 4-1 below) 
of its polynomial pieces; see Chapter 6, “Tensor Product Splines,” for a 
discussion of multivariate piecewise-polynomials. The coefficients may be 
(column-)vectors, matrices, even ND-arrays. For simplicity, the present 
discussion deals only with the case when the coefficients are scalars.

The break sequence is assumed to be strictly increasing,

breaks(1) < breaks(2) < ... < breaks(l+1)

with l the number of polynomial pieces that make up .

While these polynomials may be of varying degrees, they are all recorded as 
polynomials of the same order k, i.e., the coefficient array coefs is of size [l,k], 
with coefs(j,:) containing the k coefficients in the local power form for the 
jth polynomial piece, from the highest to the lowest power; see Equation 4-1 
below. 

f

f
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ppform
The items breaks, coefs, l, and k, make up the ppform of , along with the 
dimension d of its coefficients; usually d equals 1. The basic interval of this form 
is the interval [breaks(1) .. breaks(l+1)]. It is the default interval over which 
a function in ppform is plotted by the plot command fnplt.

In these terms, the precise description of the piecewise-polynomial  is

 = polyval(coefs(j,:),  - breaks(j)) (4-1)

for .

Here, polyval(a,x) is the MATLAB function; it returns the number

This defines  only for  in the half-open interval 
[breaks(1)..breaks(l+1)). For any other ,  is defined by

i.e., by extending the first, respectively last, polynomial piece. In this way, a 
function in ppform has possible jumps, in its value and/or its derivatives, only 
across the interior breaks, breaks(2:l). The end breaks, breaks([1,l+1]), 
mainly serve to define the basic interval of the ppform.

f

f

f t( ) t

breaks j( ) t breaks j 1+( )<≤

a

j 1=

k

∑ j( )xk j–
a= 1( ) xk 1–

a+ 2( ) xk 2– … a+ + k( ) x0

f t( ) t
t f t( )

f t( ) polyval coefs j :,( ) t breaks j( )–,( )= j
1 t breaks 1( )<,
l t breaks l 1+( )≥,

=



4 The ppform

4-4

Construction
A piecewise-polynomial is usually constructed by some command, through a 
process of interpolation or approximation, or conversion from some other form 
e.g., from the B-form, and is output as a variable. But it is also possible to make 
one up from scratch, using the statement

pp = ppmak(breaks,coefs)

For example, we might say pp=ppmak(-5:-1,-22:-11), or, more explicitly,

breaks = -5:-1;
coefs = -22:-11;
pp = ppmak(breaks,coefs);

thus supplying the uniform break sequence -5:-1 and the coefficient sequence 
-22:-11. Since this break sequence has 5 entries, hence 4 break intervals, while 
the coefficient sequence has 12 entries, we have, in effect, specified a 
piecewise-polynomial of order 3 (= 12/4). The command 

fnbrk(pp)

prints out all the constituent parts of this piecewise-polynomial, as follows:

breaks(1:l+1) 
-5 -4 -3 -2 -1 

coefficients(d*l,k) 
-22 -21 -20 
-19 -18 -17
-16 -15 -14 
-13 -12 -11 

pieces number l
4

order k
3

dimension d of target
1

Further, fnbrk can be used to supply each of these parts separately. But the 
point of Spline Toolbox is that you usually need not concern yourself with these 
details. You simply use pp as an argument to commands that evaluate, 
differentiate, integrate, convert, or plot the piecewise-polynomial whose 
description is contained in pp.
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Available Commands
Here are some operations you can perform on a piecewise-polynomial.

Inserting additional breaks comes in handy when one wants to add two 
piecewise-polynomials with different breaks, as is done in the command fncmb.

To illustrate the use of some of these commands, here is a plot of the particular 
piecewise-polynomial we just made up. First, the basic plot: 

x = linspace(-5.5,-.5,101);
plot(x, fnval(pp,x),'x')

Then add to the plot the breaklines:

breaks=fnbrk(pp,'b'); yy=axis; hold on 
for j=1:fnbrk(pp,'l')+1 

plot(breaks([j j]),yy(3:4))
end

v = fnval(pp,x) Evaluates

dpp = fnder(pp) Differentiates

dirpp = fndir(pp,dir) Differentiates in the direction dir

ipp = fnint(pp) Integrates

fnmin(pp,[a,b]) Finds the minimum value in given interval

fnzeros(pp,[a,b]) Finds the zeros in the given interval

pj = fnbrk(pp,j) Pulls out the jth polynomial piece

pc = fnbrk(pp,[a b]) Restricts/extends to the interval [a..b]

po = fnxtr(pp,order) Extends outside its basic interval by 
polynomial of  specified order

fnplt(pp,[a,b]) Plots on given interval

sp = fn2fm(pp,'B-') Converts to B-form

pr = fnrfn(pp,morebreaks) Inserts additional breaks
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Finally, superimpose on that plot the plot of the polynomial that supplies the 
third polynomial piece:

plot(x,fnval(fnbrk(pp,3),x),'linew',1.3)
set(gca,'ylim',[-60 -10]), hold off

Figure 4-1:  A Piecewise-Polynomial Function, Its Breaks, and the Polynomial 
Giving Its Third Piece 

The figure above is the final picture. It shows the piecewise-polynomial as a 
sequence of points and, solidly on top of it, the polynomial from which its third 
polynomial piece is taken. It is quite noticeable that the value of a 
piecewise-polynomial at a break is its limit from the right, and that the value 
of the piecewise-polynomial outside its basic interval is obtained by extending 
its leftmost, respectively its rightmost, polynomial piece. 

While the ppform of a piecewise-polynomial is efficient for evaluation, the 
construction of a piecewise-polynomial from some data is usually more 
efficiently handled by determining first its B-form, i.e., its representation as a 
linear combination of B-splines.
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The B-form

Introduction (p. 5-2) Sets the stage by introducing the coefficients and knots of 
a spline and defining its order.

B-form (p. 5-3) Formal definition of the B-form.

B-Splines (p. 5-4) Basic properties of B-splines, the basic building blocks of 
the B-form.

Knot Multiplicity (p. 5-5) The interplay between the smoothness of a spline across a 
knot and the multiplicity of that knot.

Choice of Knots (p. 5-7) Choosing the knot sequence to achieve a specified 
smoothness across the specified breaks.

Splines (p. 5-8) Splines vs. B-splines.

Construction (p. 5-9) Use of spmak to put together the B-form.

Example: A Spline Curve (p. 5-10) A good spline approximation to a circle is constructed, and 
is shown to have, indeed, near-constant curvature.

Available Commands (p. 5-12) A listing of the fn... commands applicable to a spline in 
B-form, followed by a listing of means for generating 
suitable knot sequences, and a discussion of spcol, the 
major tool for the construction of a spline that satisfies 
given condition.
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Introduction
A univariate spline  is specified by its nondecreasing knot sequence t and by 
its B-spline coefficient sequence a — see Chapter 6, “Tensor Product Splines,” 
for a discussion of multivariate splines. The coefficients may be 
(column-)vectors, matrices, even ND-arrays. When the coefficients are 
2-vectors or 3-vectors,  is a curve in  or  and the coefficients are called 
the control points for the curve.

Roughly speaking, such a spline is piecewise-polynomial of a certain order and 
with breaks . But knots are different from breaks in that they may be 
repeated, i.e., t need not be strictly increasing. The resulting knot multiplicities 
govern the smoothness of the spline across the knots, as detailed below.

With [d,n] = size(a), and n+k = length(t), the spline is of order k. This 
means that its polynomial pieces have degree < k. For example, a cubic spline 
is a spline of order 4 since it takes four coefficients to specify a cubic polynomial.

f

f R2 R3

t i( )
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B-form
These four items, t, a, n, and k, make up the B-form of the spline . 

This means, explicitly, that

with  the th B-spline of order k for the given knot 
sequence t, i.e., the B-spline with knots . The basic interval of 
this B-form is the interval [t(1)..t(n+k)]. It is the default interval over which 
a spline in B-form is plotted by the command fnplt. Note that a spline in 
B-form is zero outside its basic interval while, after conversion to ppform via 
fn2fm, this is usually not the case since, outside its basic interval, a 
piecewise-polynomial is defined by extension of its first or last polynomial 
piece. In particular, a function in B-form may have jumps in value and/or one 
of its derivative not only across its interior knots, i.e., across  with 

, but also across its end knots,  and .

f

f Bika : i,( )
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n
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B-Splines
The building blocks for the B-form of a spline are the B-splines. Figure 5-1 
shows a picture of such a B-spline, the one with the knot sequence 
[0 1.5 2.3 4 5], hence of order 4, together with the polynomials whose pieces 
make up the B-spline. The information for that picture could be generated by 
the command 

bspline([0 1.5 2.3 4 5])

Figure 5-1:  A B-Spline of Order 4, and the Four Cubic Polynomials from Which 
It Is Made

To summarize: The B-spline with knots  is positive on the 
interval  and is zero outside that interval. It is 
piecewise-polynomial of order k with breaks at the sites . 
These knots may coincide, and the precise multiplicity governs the smoothness 
with which the two polynomial pieces join there. 

t i( ) ... t i+k( )≤ ≤
t i( )..t i k+( )( )

t i( ) … t i k+( ), ,



Knot Multiplicity

5-5

Knot Multiplicity
The rule is

knot multiplicity + condition multiplicity = order

Figure 5-2:  All Third-Order B-Splines for a Certain Knot Sequence with 
Various Knot Multiplicities

For example, for a B-spline of order 3, a simple knot would mean two 
smoothness conditions, i.e., continuity of function and first derivative, while a 
double knot would only leave one smoothness condition, i.e., just continuity, 
and a triple knot would leave no smoothness condition, i.e., even the function 
would be discontinuous.

Figure 5-2 shows a picture of all the third-order B-splines for a certain mystery 
knot sequence t. The breaks are indicated by vertical lines. For each break, try 
to determine its multiplicity in the knot sequence (it is 1,2,1,1,3), as well as its 
multiplicity as a knot in each of the B-splines. For example, the second break 
has multiplicity 2 but appears only with multiplicity 1 in the third B-spline and 
not at all, i.e., with multiplicity 0, in the last two B-splines. Note that only one 
of the B-splines shown has all its knots simple. It is the only one having three 
different nontrivial polynomial pieces. Note also that you can tell the 
knot-sequence multiplicity of a knot by the number of B-splines whose nonzero 
part begins or ends there. The picture is generated by the following MATLAB® 
statements, which use the command spcol from this toolbox to generate the 
function values of all these B-splines at a fine net x. 
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t=[0,1,1,3,4,6,6,6]; x=linspace(-1,7,81); 
c=spcol(t,3,x);[l,m]=size(c); 
c=c+ones(l,1)*[0:m-1]; 
axis([-1 7 0 m]); hold on 
for tt=t, plot([tt tt],[0 m],'-'), end 
plot(x,c,'linew',2), hold off, axis off

Further illustrated examples are provided by the demo Intro to B-form  
available on the Demos tag in the MATLAB® Help browser. You can also use 
the GUI bspligui to study the dependence of a B-spline on its knots 
experimentally.



Choice of Knots

5-7

Choice of Knots
The rule “knot multiplicity + condition multiplicity = order” has the following 
consequence for the process of choosing a knot sequence for the B-form of a 
spline approximant. Suppose the spline  is to be of order , with basic 
interval , and with interior breaks . Suppose, further, that, 
at , the spline is to satisfy  smoothness conditions, i.e.,

Then, the appropriate knot sequence  should contain the break  exactly 
 times, . In addition, it should contain the two endpoints,  

and , of the basic interval exactly  times. This last requirement can be 
relaxed, but has become standard. With this choice, there is exactly one way to 
write each spline s with the properties described as a weighted sum of the 
B-splines of order  with knots a segment of the knot sequence . This is the 
reason for the B in B-spline: B-splines are, in Schoenberg’s terminology, basic 
splines.

For example, if you want to generate the B-form of a cubic spline on the interval 
[1 .. 3], with interior breaks 1.5, 1.8, 2.6, and with two continuous derivatives, 
then the following would be the appropriate knot sequence:

t = [1, 1, 1, 1, 1.5, 1.8, 2.6, 3, 3, 3, 3];

This is supplied by augknt([1, 1.5, 1.8, 2.6, 3], 4). If you wanted, 
instead, to allow for a corner at 1.8, i.e., a possible jump in the first derivative 
there, you would triple the knot 1.8, i.e., use

t = [1, 1, 1, 1, 1.5, 1.8, 1.8, 1.8, 2.6, 3, 3, 3, 3];

and this is provided by the statement

t = augknt([1, 1.5, 1.8, 2.6, 3], 4, [1, 3, 1] );

s k
a..b[ ] ξ2

... ξl< <
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jumpξi
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Splines
The shorthand

is one of several ways to indicate that  is a spline of order k with knot sequence 
t, i.e., a linear combination of the B-splines of order k for the knot sequence t.

A word of caution: The term B-spline has been expropriated by the 
Computer-Aided Geometric Design (CAGD) community to mean what is called 
here a spline in B-form, with the unhappy result that, in any discussion 
between mathematicians/approximation theorists and people in CAGD, one 
now always has to check in what sense the term is being used.

f Sk t,∈

f
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Construction
Usually, a spline is constructed from some information, like function values 
and/or derivative values, or as the approximate solution of some ordinary 
differential equation. But it is also possible to make up a spline from scratch, 
by providing its knot sequence and its coefficient sequence to the command 
spmak. 

For example, we might say 

sp = spmak(1:10,3:8);

thus supplying the uniform knot sequence 1:10 and the coefficient sequence 
3:8. Since there are 10 knots and 6 coefficients, the order must be 4(= 10 - 6), 
i.e., we get a cubic spline. The command 

fnbrk(sp) 

prints out the constituent parts of the B-form of this cubic spline, as follows:

knots(1:n+k) 
1 2 3 4 5 6 7 8 9 10 

coefficients(d,n) 
3 4 5 6 7 8 

number n of coefficients 
6 

order k 
4 

dimension d of target 
1

Further, fnbrk can be used to supply each of these parts separately. 

But the point of the Spline Toolbox™ product is that there shouldn’t be any 
need for you to look up these details. You simply use sp as an argument to 
commands that evaluate, differentiate, integrate, convert, or plot the spline 
whose description is contained in sp.
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Example: A Spline Curve
As another simple example, 

points = .95*[0 -1 0 1;1 0 -1 0]; 
sp = spmak(-4:8,[points points]);

provides a planar, quartic, spline curve whose middle part is a pretty good 
approximation to a circle, as the plot on the next page shows. It is generated by 
a subsequent

plot(points(1,:),points(2,:),'x'), hold on 
fnplt(sp,[0,4]), axis equal square, hold off

Insertion of additional control points  would make a 
visually perfect circle.

Here are more details. The spline curve generated has the form 

, with -4:8 the uniform knot sequence, and with its control 

points  the sequence 
 with . 

Only the curve part between the parameter values 0 and 4 is actually plotted.

To get a feeling for how close to circular this part of the curve actually is, we 
compute its unsigned curvature. The curvature  at the curve point  
of a space curve  can be computed from the formula

in which  is the Euclidean length of the 3-vector a, and  is the cross 
product of the two 3-vectors a and b, and  and  are the first and second 
derivative of the curve with respect to the parameter used. We treat our planar 
curve as a space curve in the -plane, hence obtain the maximum and 
minimum of its curvature at 21 points as follows:

t = linspace(0,4,21);zt = zeros(size(t));
dsp = fnder(sp); dspt = fnval(dsp,t); ddspt = fnval(fnder(dsp),t);
kappa = abs(dspt(1,:).*ddspt(2,:)-dspt(2,:).*ddspt(1,:))./...

(sum(dspt.^2)).^(3/2);
[min(kappa),max(kappa)] 

0.95± 0.95±,( ) 1.9⁄

Σ8
j 1= Bj 5, a(:,j)

a : j,( )
0 α,( ) α 0,–( ) 0 α–,( ) α 0,( ) 0 α,( ) α 0,–( ) 0 α–,( ) α 0,( ), , , , , , , α 0.95=

κ(t) γ(t)
γ

κ(t) γ'(t) γ'' t( )× γ' t( ) 3⁄=

a a b×
γ' γ''

x y,( )
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ans = 
     1.6747    1.8611

So, while the curvature is not quite constant, it is close to 1/radius of the circle, 
as we see from the next calculation:

1/norm(fnval(sp,0)) 

ans = 
     1.7864 

Figure 5-3:  Spline Approximation to a Circle; Control Points Are Marked x
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Available Commands
The following commands are available for spline work. There is spmak and 
fnbrk to make up a spline and take it apart again. Use fn2fm to convert from 
B-form to ppform. You can evaluate, differentiate, integrate, minimize, find 
zeros of, plot, refine, or selectively extrapolate a spline with the aid of fnval, 
fnder, fndir, fnint, fnmin, fnzeros, fnplt, fnrfn, and fnxtr.

There are five commands for generating knot sequences: 

• augknt for providing boundary knots and also controlling the multiplicity of 
interior knots 

• brk2knt for supplying a knot sequence with specified multiplicities 

• aptknt for providing a knot sequence for a spline space of given order that is 
suitable for interpolation at given data sites

• optknt for providing an optimal knot sequence for interpolation at given 
sites

• newknt for a knot sequence perhaps more suitable for the function to be 
approximated 

In addition, there is: 

• aveknt to supply certain knot averages (the Greville sites) as recommended 
sites for interpolation

• chbpnt to supply such sites

• knt2brk and knt2mlt for extracting the breaks and/or their multiplicities 
from a given knot sequence

To display a spline curve with given two-dimensional coefficient sequence and 
a uniform knot sequence, use spcrv.

You can also write your own spline construction commands, in which case you 
will need to know the following. The construction of a spline satisfying some 
interpolation or approximation conditions usually requires a collocation 
matrix, i.e., the matrix that, in each row, contains the sequence of numbers 

, i.e., the th derivative at  of the th B-spline, for all , for some 
 and some site . Such a matrix is provided by spcol. An optional argument 

allows for this matrix to be supplied by spcol in a space-saving 
spline-almost-block-diagonal-form or as a MATLAB sparse matrix. It can be 
fed to slvblk, a command for solving linear systems with an 

DrBj k, τ( ) r τ j j
r τ
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almost-block-diagonal coefficient matrix. If you are interested in seeing how 
spcol and slvblk are used in this toolbox, have a look at the commands spapi, 
spap2, and spaps.

In addition, there are routines for constructing cubic splines. csapi and csape 
provide the cubic spline interpolant at knots to given data, using the not-a-knot 
and various other end conditions, respectively. A parametric cubic spline curve 
through given points is provided by cscvn. The cubic smoothing spline is 
constructed in csaps.

The remaining commands involving the B-form are utilities, of no interest to 
the casual user.
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Tensor Product Splines

Introduction (p. 6-2) Sets the stage.

B-form (p. 6-3) Defines the tensor-product of two functions and describes the B-form of a 
tensor-product spline.

Construction and Use 
(p. 6-4)

Discusses the construction of a tensor-product spline interpolant to 
gridded data and its efficient evaluation.

ppform (p. 6-5) Defines the ppform of a tensor-product spline.

Example: The Möbius 
Band (p. 6-6)

Details the construction of a 3-vector valued bivariate tensor-product 
spline whose range is the Moebius band.
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Introduction
The toolbox provides (polynomial) spline functions in any number of variables, 
as tensor products of univariate splines. These multivariate splines come in 
both standard forms, the B-form and the ppform, and their construction and 
use parallels entirely that of the univariate splines discussed in previous 
sections, Chapter 4, “The ppform,” and Chapter 5, “The B-form.” The same 
commands are used for their construction and use.

For simplicity, the following discussion deals just with bivariate splines.
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B-form
The tensor-product idea is very simple. If  is a function of , and  is a 
function of , then their tensor-product  is a function of  
and , i.e., a bivariate function. More generally, with  and 

 knot sequences and  a 

corresponding coefficient array, we obtain a bivariate spline as

The B-form of this spline comprises the cell array  of its knot sequences, 
the coefficient array , the numbers vector , and the orders vector 

. The command

sp = spmak( );

constructs this form. Further, fnplt, fnval, fnder, fndir, fnrfn, and fn2fm 
can be used to plot, evaluate, differentiate and integrate, refine, and convert 
this form.

f x g
y p x y,( ): f= x( )g y( ) x

y s s1,...,sm h+( )=

t t1,...,tn k+( )= aij:i 1,… m, j; 1 … n, ,= =( )

f x y,( ) B x si … si h+, ,( )B y tj … tj k+, ,( )aij
j 1=

n

∑
i 1=

m

∑=

s t,{ }
a m n,[ ]

h k,[ ]

s t,{ } a,
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Construction and Use
You are most likely to construct such a form by looking for an interpolant or 
approximant to gridded data. For example, if you know the values 

, of some function  at all the 
points in a rectangular grid, then, assuming that the strictly increasing 
sequence x satisfies the Schoenberg-Whitney conditions with respect to the 
above knot sequence , and that the strictly increasing sequence y satisfies the 
Schoenberg-Whitney conditions with respect to the above knot sequence , the 
command

constructs the unique bivariate spline of the above form that matches the given 
values. The command fnplt(sp) gives you a quick plot of this interpolant. The 
command pp = fn2fm(sp,'pp') gives you the ppform of this spline, which is 
probably what you want when you want to evaluate the spline at a fine grid 
((xx(i),yy(j)) for i=1:M, j=1:N), by the command:

values = fnval(pp,{xx,yy});

z(i,j) g x(i), y(j)( )= i 1:m= j 1:n=, , g

s
t

sp spapi s t,{ } h k[ ] x,y{ } z, , ,( );=
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ppform
The ppform of such a bivariate spline comprises, analogously, a cell array of 
break sequences, a multidimensional coefficient array, a vector of number 
pieces, and a vector of polynomial orders. Fortunately, the toolbox is set up in 
such a way that there is usually no reason for you to concern yourself with 
these details of either form. You use interpolation, approximation, or 
smoothing to construct splines, and then use the fn... commands to make use 
of them.
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Example: The Möbius Band
Here is an example of a surface constructed as a 3-D-valued bivariate spline. 
The surface is the famous Möbius band, obtainable by taking a longish strip of 
paper and gluing its narrow ends together, but with a twist. The figure is 
obtained by the following commands:

x = 0:1; y = 0:4; h = 1/4; o2 = 1/sqrt(2); s = 2; ss = 4;
v(3,:,:) = h*[0, -1, -o2, 0, o2, 1, 0;0, 1, o2, 0, -o2, -1, 0];
v(2,:,:) = [ss, 0, s-h*o2, 0, -s-h*o2, 0, ss;...

ss, 0, s+h*o2, 0,-s+h*o2, 0, ss];
v(1,:,:) = s*[0, 1, 0, -1+h, 0, 1, 0; 0, 1, 0, -1-h, 0, 1, 0];
cs = csape({x,y},v,{'variational','clamped'});
fnplt(cs), axis([-2 2 -2.5 2.5 -.5 .5]), shading interp
axis off, hold on
values = squeeze(fnval(cs,{1,linspace(y(1),y(end),51)}));
plot3(values(1,:), values(2,:), values(3,:),'k','linew',2)
view(-149,28), hold off

Figure 6-1:  A Möbius Band Made by Vector-Valued Bivariate Spline 
Interpolation
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NURBS and Other 
Rational Splines

Introduction (p. 7-2) Sets the stage by defining rational splines and stressing 
their ability to represent certain basic shapes, like conic 
sections, exactly.

Example: Circle (p. 7-3) A circle is constructed as the range of a rational spline, and 
fncmb is used to derive from this affine images of the circle.

Example: Sphere (p. 7-5) A sphere is constructed as the concatenation of the range 
of a 3-vector valued bivariate rational spline and five of its 
suitable rotates.

rsform: rpform, rBform (p. 7-6) Formal definition of rational forms as just a different take 
on the ordinary spline forms.

Available Commands (p. 7-7) Lists the fn... commands not applicable to a spline in 
rsform, discusses commands that construct splines in 
rsform, and relates the rsform to NURBS.
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Introduction
A rational spline is, by definition, any function that is the ratio of two splines:

This requires  to be scalar-valued, but  is often chosen to be vector-valued. 
Further, it is desirable that  be not zero for any  of interest.

Rational splines are popular because, in contrast to ordinary splines, they can 
be used to describe certain basic design shapes, like conic sections, exactly. 

r x( ) s x( ) w x( )⁄=

w s
w x( ) x
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Example: Circle
For example,

circle = rsmak('circle');

provides a rational spline whose values on its basic interval trace out the unit 
circle, i.e., the circle of radius 1 with center at the origin, as the command

fnplt(circle), axis square

readily shows; the resulting output is the circle in Figure 7-1. 

Figure 7-1:  A Circle and an Ellipse, Both Given By a Rational Spline

It is easy to manipulate this circle to obtain related shapes. For example, the 
next commands stretch the circle into an ellipse, rotate the ellipse 45 degrees, 
and translate it by (1,1), and then plot it on top of the circle.

ellipse = fncmb(circle,[2 0;0 1]);
s45 = 1/sqrt(2);
rtellipse = fncmb(fncmb(ellipse, [s45 -s45;s45 s45]), [1;1] );
hold on, fnplt(rtellipse), hold off

As a further example, the “circle” just constructed is put together from four 
pieces. We highlight the first such piece, by the following commands:

quarter = fnbrk(fn2fm(circle,'rp'),1);
hold on, fnplt(quarter,3), hold off
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In the first command, fn2fm is used to change forms, from one based on the 
B-form to one based on the ppform, and then fnbrk is used to extract the first 
piece, and this piece is then plotted on top of the circle in Figure 7-1, with 
linewidth 3 to make it stand out.
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Example: Sphere
As a surface example, the command rsmak('southcap') provides a 3-vector 
valued rational bicubic polynomial whose values on the unit square [-1 .. 1]^2 
fill out a piece of the unit sphere. Adjoin to it five suitable rotates of it and you 
get the unit sphere exactly. For illustration, the following commands generate 
2/3 of that sphere, as shown in Figure 7-2.

southcap = rsmak('southcap'); fnplt(southcap)
xpcap = fncmb(southcap,[0 0 -1;0 1 0;1 0 0]);
ypcap = fncmb(xpcap,[0 -1 0; 1 0 0; 0 0 1]);
northcap = fncmb(southcap,-1);
hold on, fnplt(xpcap), fnplt(ypcap), fnplt(northcap)
axis equal, shading interp, view(-115,10), axis off, hold off

Figure 7-2:  Part of a Sphere Formed by Four Rotates of a Quartic Rational



7 NURBS and Other Rational Splines

7-6

rsform: rpform, rBform
Offhand, the two splines,  and , in the rational spline  
need not be related to one another. They could even be of different forms. But, 
in the context of this toolbox, it is convenient to restrict them to be of the same 
form, and even of the same order and with the same breaks or knots. For, under 
that assumption, we can (and do) represent such a rational spline by the 
(vector-valued) spline function

whose values are vectors with one more entry than the values of the rational 
spline , and call this the  rsform of the rational spline, or, more precisely, the 
rpform or rBform, depending on whether  and  are in ppform or in B-form. 
Internally, the only thing that distinguishes these rational forms from their 
corresponding ordinary spline forms,  rpform and B-form, is their form part, 
i.e., the string obtained via fnbrk(r,'form'). This is enough to alert the fn... 
commands to act appropriately on a function in one of the rsforms.

For example, as is done in fnval, it is very easy to obtain  from . If 
v is the value of  at , then v(1:end-1)/v(end) is the value of  at . If, in 
addition, dv is , then (dv(1:end-1)-dv(end)*v(1:end-1))/v(end) is 

. More generally, by Leibniz’s formula, 

Therefore,

This shows that we can compute the derivatives of  inductively, using the 
derivatives of  and  (i.e., the derivatives of ) along with the derivatives of 

 of order less than  to compute the th derivative of .  This inductive 
scheme is used in fntlr to provide the first so many derivatives of a rational 
spline. There is a corresponding formula for partial and directional derivatives 
for multivariate rational splines.
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Available Commands
Having chosen to represent the rational spline  in this way by the 
ordinary spline  makes it is easy to apply to a rational spline all 
the fn... commands in the Spline Toolbox™ product, with the following 
exceptions. The integral of a rational spline need not be a rational spline, hence 
there is no way to extend fnint to rational splines. The derivative of a rational 
spline is again a rational spline but one of roughly twice the order. For that 
reason, fnder and fndir will not touch rational splines. Instead, there is the 
command fntlr for computing the value at a given x of all derivatives up to a 
given order of a given function. If that function is rational, the needed 
calculation is based on the considerations given in the preceding paragraph.

The command r = rsmak(shape) provides rational splines in rBform that 
describe exactly certain standard geometric shapes , like 'circle', 'arc', 
'cylinder', 'sphere', 'cone', 'torus'. The command fncmb(r,trans) can 
be used to apply standard transformations to the resulting shape. For example, 
if trans is a column-vector of the right length, the shape would be translated 
by that vector while, if trans is a suitable matrix like a rotation, the shape 
would be transformed by that matrix.

The command r = rscvn(p) constructs the quadratic rBform of a 
tangent-continuous curve made up of circular arcs and passing through the 
given sequence, p, of points in the plane.

A special rational spline form, called a NURBS, has become a standard tool in 
CAGD. A NURBS is, by definition, any rational spline for which both  and  
are in the same B-form, with each coefficient for  containing explicitly the 
corresponding coefficient for  as a factor:

The normalized coefficients  for the numerator spline are more readily 
used as control points than the unnormalized coefficients  used in 
the rBform. Nevertheless, this toolbox provides no special NURBS form, but 
only the more general rational spline, but in both B-form (called rBform 
internally) and in ppform (called rpform internally).

r s w⁄=
R s;w[ ]=

s w
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w
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The rational spline circle used earlier is put together in rsmak by code like the 
following.

x = [1 1 0 -1 -1 -1  0  1 1]; y = [0 1 1  1  0 -1 -1 -1 0];
s45 = 1/sqrt(2); w =[1 s45 1 s45 1 s45 1 s45 1];
circle = rsmak(augknt(0:4,3,2), [w.*x;w.*y;w]);

Note the appearance of the denominator spline as the last component. Also 
note how the coefficients of the denominator spline appear here explicitly as 
factors of the corresponding coefficients of the numerator spline. The 
normalized coefficient sequence [x;y] is very simple; it consists of the vertices 
and midpoints, in proper order, of the “unit square”. The resulting control 
polygon is tangent to the circle at the places where the four quadratic pieces 
that form the circle abut.

For a thorough discussion of NURBS, see [G. Farin, NURBS, 2nd ed., 
AKPeters Ltd, 1999] or [Les Piegl and Wayne Tiller, The NURBS Book, 2nd 
ed., Springer-Verlag, 1997].



 

8

The stform

Introduction (p. 8-2) Motivates and describes the stform.

Properties of the stform (p. 8-3) Gives specific examples of stforms and discusses their 
advantages and liabilities.

Available Commands (p. 8-5) Discusses the fn... commands applicable to a function in 
stform.
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Introduction
A multivariate function form quite different from the tensor-product construct 
is the scattered translates form, or stform for short. As the name suggests, it 
uses arbitrary or scattered translates  of one fixed function , in 
addition to some polynomial terms. Explicitly, such a form describes a function

in terms of the basis function , a sequence  of sites called centers and a 
corresponding sequence  of  coefficients, with the final  coefficients, 

, involved in the polynomial part, .

When the basis function is radially symmetric, meaning that  depends 
only on the Euclidean length  of its argument, , then  is called a radial 
basis function, and, correspondingly,  is then often called an RBF.

At present, the toolbox works with just one kind of stform, namely a bivariate 
thin-plate spline and its first partial derivatives. For the thin-plate spline, the 
basis function is , with , i.e., a radial basis 
function. Its polynomial part is a linear polynomial, i.e., 

. The first partial derivative with respect to 
its first argument uses, correspondingly, the basis function , 
with  and , and .
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Properties of the stform
A function in stform can be put together from its center sequence centers and 
its coefficient sequence coefs by the command

f = stmak(centers, coefs, type);

with the string type one of 'tp00', 'tp10', 'tp01', to indicate, respectively, a 
thin-plate spline, a first partial of a thin-plate spline with respect to the first 
argument, and a first partial of a thin-plate spline with respect to the second 
argument. There is one other choice, 'tp'; it denotes a thin-plate spline 
without any polynomial part and is likely to be used only during the 
construction of a thin-plate spline, as in tpaps.

A function  in stform depends linearly on its coefficients, meaning that

with  either a translate of the basis function  or else some polynomial. 
Suppose you wanted to determine these coefficients  so that the function  
matches prescribed values at prescribed sites . Then you would need the 
collocation matrix . You can obtain this matrix by the command 
stcol(centers,x,type). In fact, since the stform has  as the th column, 
coefs(:,j), of its coefficient array, it is worth noting that stcol can also 
supply the transpose of the collocation matrix. Thus, the command

values = coefs*stcol(centers,x,type,'tr');

would provide the values at the entries of x of the st function specified by 
centers and type.

The stform is attractive since, in contrast to piecewise polynomial forms, its 
complexity is the same in any number of variables. It is quite simple, yet, 
because of the complete freedom in the choice of centers, very flexible and 
adaptable.

On the negative side, the most attractive choices for a radial basis function 
share with the thin-plate spline that the evaluation at any site involves all 
coefficients. For example, plotting a scalar-valued thin-plate spline via fnplt 
involves evaluation at a 51-by-51 grid of sites, a nontrivial task when there are 
1000 coefficients or more. The situation is worse when we want to determine 

f
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these 1000 coefficients so as to obtain the stform of a function that matches 
function values at 1000 data sites, as this calls for solving a full linear system 
of order 1000, a task requiring O(10^9) flops if done by a direct method. Just 
the construction of the collocation matrix for this linear system (by stcol) 
takes O(10^6) flops.

The command tpaps, which constructs thin-plate spline interpolants and 
approximants, uses iterative methods when there are more than 728 data 
points, but convergence of such iteration may be slow.
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Available Commands
Once you have constructed an approximating or interpolating thin-plate spline 
st with the aid of tpaps (or directly via stmak), you can use fnbrk to obtain its 
parts or change its basic interval, fnval to evaluate it, fnplt to plot it, and 
fnder to construct its two first partial derivatives, but no higher order 
derivatives as they become infinite at the centers. This is just one indication 
that the stform is quite different in nature from the other forms in this toolbox, 
hence other fn... commands by and large don’t work with stforms. For 
example, it makes no sense to use fnjmp, and fnmin or fnzeros only work for 
univariate functions. It also makes no sense to use fnint on a function in 
stform since such functions cannot be integrated in closed form. The command 
Ast = fncmb(st,A) can be used on st, provided A is something that can be 
applied to the values of the function described by st. For example, A might be 
'sin', in which case Ast is the stform of the function whose coefficients are the 
sine of the coefficients of st. In effect, Ast describes the function obtained by 
composing A with st. But, because of the singularities in the higher-order 
derivatives of a thin-plate spline, there seems little point to make fndir or 
fntlr applicable to such a st.
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Advanced Examples

Least-Squares Approximation by 
“Natural” Cubic Splines (p. 9-2)

The example of least-squares approximation by “natural” 
cubic splines is used to illustrate how an M-file meant for 
interpolation (in the example, it is csape) can be used to 
construct a least-squares approximation. Also, fnxtr is 
used to define properly a “natural” cubic spline outside its 
basic interval.

A Nonlinear ODE (p. 9-7) An approximate solution to a second-order nonlinear ODE 
is obtained by collocation. The boundary layer, that 
develops as a ‘small’ parameter in the equation is varied, is 
well approximated with the aid of the adaptive knot choice 
provided by newknt.

Construction of the Chebyshev Spline 
(p. 9-13)

The extrema of the Chebyshev spline of a given spline 
space are very good sites at which to interpolate from that 
space. Their computation illustrates the use of various 
commands in this toolbox: augnkt, aveknt, spcol, csapi, 
fnder, fnplt.

Approximation by Tensor Product 
Splines (p. 9-18)

A detailed illustration of how to use M-files for the 
approximation to univariate vector-valued data to 
construct approximations to multivariate data at gridded 
data sites. The discussion provides the argument for the 
fact that such an approximation does not depend on the 
order in which the univariate methods are applied.
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Least-Squares Approximation by “Natural” Cubic Splines
The construction of a least-squares approximant usually requires that one 
have in hand a basis for the space from which the data are to be approximated. 
As the example of the space of “natural” cubic splines illustrates, the explicit 
construction of a basis is not always straightforward.

 This section makes clear that an explicit basis is not actually needed; it is 
sufficient to have available some means of interpolating in some fashion from 
the space of approximants. For this, the fact that the Spline Toolbox™ product 
supports work with vector-valued functions is essential. 

This section discusses these aspects of least-squares approximation by 
“natural” cubic splines.

• “Problem” on page 9-2

• “General Resolution” on page 9-2

• “Need for a Basis Map” on page 9-3

• “A Basis Map for “Natural” Cubic Splines” on page 9-3

• “The One-line Solution” on page 9-4

• “The Need for Proper Extrapolation” on page 9-4

• “The Correct One-Line Solution” on page 9-5

• “Least-Squares Approximation by Cubic Splines” on page 9-6

Problem
You want to construct the least-squares approximation to given data (x,y) from 
the space S of  “natural” cubic splines with given breaks b(1) < ...< b(l+1).

General Resolution
If you know a basis, (f1,f2,...,fm), for the linear space S of all “natural” cubic 
splines with break sequence b, then you have learned to find the least-squares 
approximation in the form c(1)f1+ c(2)f2+ ... + c(m)fm, with the vector c the 
least-squares solution to the linear system A? = y, whose coefficient matrix is 
given by  

A(i,j) = fj(x(i)),   i=1:length(x),  j=1:m .

In other words, c = A\y.
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Need for a Basis Map
The general solution seems to require that you know a basis. However, in order 
to construct the coefficient sequence c, you only need to know the matrix A. For 
this, it is sufficient to have at hand a basis map, namely an M-file, F say, so that 
F(c) returns the spline given by the particular weighted sum c(1)f1+c(2)f2+... 
+c(m)fm. For, with that, you can obtain, for j=1:m, the j-th column of A as 
fnval(F(ej),x), with ej the j-th column of eye(m), the identity matrix of 
order m.

Better yet, the Spline Toolbox™ product can handle vector-valued functions, so 
you should be able to construct the basis map F to handle vector-valued 
coefficients c(i) as well. However, by agreement, in this toolbox, a 
vector-valued coefficient is a column vector, hence the sequence c is necessarily 
a row vector of column vectors, i.e., a matrix. With that, F(eye(m)) is the 
vector-valued spline whose i-th component is the basis element fi, i=1:m. 
Hence, assuming the vector x of data sites to be a row vector, 
fnval(F(eye(m)),x) is the matrix whose (i,j)-entry is the value of fi at x(j), 
i.e., the transpose of the matrix A you are seeking. On the other hand, as just 
pointed out, your basis map F expects the coefficient sequence c to be a row 
vector, i.e., the transpose of the vector A\y.  Hence, assuming, correspondingly, 
the vector y of data values to be a row vector, you can obtain the least-squares 
approximation from S to data (x,y) as

F(y/fnval(F(eye(m)),x))

To be sure, if you wanted to be prepared for x and y to be arbitrary vectors (of 
the same length), you would use instead

F(y(:).'/fnval(F(eye(m)),x(:).'))

A Basis Map for “Natural” Cubic Splines
What exactly is required of a basis map F for the linear space S of “natural” 
cubic splines with break sequence b(1) < ... < b(l+1)? Assuming, as we did, 
the dimension of this linear space to be m, the map F should set up a linear 
one-to-one correspondence between m-vectors and elements of S. But that is 
exactly what csape(b, . ,'var') does.

 To be explicit, consider the following M-file F:

function s = F(c)
s = csape(b,c,'var');
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For given vector c (of the same length as b), it provides the unique “natural” 
cubic spline with break sequence b that takes the value c(i) at b(i), i=1:l+1. 
The uniqueness is key. It ensures that the correspondence between the vector 
c and the resulting spline F(c) is one-to-one. In particular, m equals length(b). 
More than that, since  the value f(t) of a function f at a point t depends linearly 
on f, this uniqueness ensures that F(c) depends linearly on c (since c equals 
fnval(F(c),b) and the inverse of an invertible linear map is again a linear 
map).

The One-line Solution
Putting it all together, you arrive at the following code

csape(b,y(:).'/fnval(csape(b,eye(length(b)),'var'),x(:).'),...
'var')

for the least-squares approximation by “natural” cubic splines with break 
sequence b.

The Need for Proper Extrapolation
Let’s try it on some data, the census data, say, which is provided in MATLAB® 
by the command

load census

and which supplies the years, 1790:10:1990, as cdate and the values as pop. 
We use the break sequence 1810:40:1970 .

b = 1810:40:1970; s = csape(b, ...
pop(:)'/fnval(csape(b,eye(length(b)),'var'),cdate(:)'),'var');
fnplt(s, [1750,2050],2.2), hold on, plot(cdate,pop,'or')
set(gca,'Fontsize',16), hold off

Have a look at Figure 9-1 which shows, in thick blue, the resulting 
approximation, along with the given data.

This looks like a good approximation, -- except that it doesn’t look like a 
“natural” cubic spline. A “natural” cubic spline, to recall, must be linear to the 
left of its first break and to the right of its last break, and this approximation 
satisfies neither condition. This is due to the following facts.

The “natural” cubic spline interpolant to given data is provided by csape in 
ppform, with the interval spanned by the data sites its basic interval. On the 
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other hand, evaluation of a ppform outside its basic interval is done, in 
MATLAB ppval or Spline Toolbox fnval, by using the relevant polynomial end 
piece of the ppform, i.e., by full-order extrapolation. In case of a “natural” cubic 
spline, you want instead second-order extrapolation. This means that you 
want, to the left of the first break, the straight line that agrees with the cubic 
spline in value and slope at the first break. Such an extrapolation is provided 
by fnxtr. Since the “natural” cubic spline has zero second derivative at its first 
break, such an extrapolation is even third-order, i.e., it satisfies three matching 
conditions. In the same way, beyond the last break of the cubic spline, you want 
the straight line that agrees with the spline in value and slope at the last 
break, and this, too, is supplied by fnxtr. 

Figure 9-1:  Least-squares Approximation by “Natural” Cubic Splines With 3 
interior breaks

The Correct One-Line Solution
The following one-line code provides the correct least-squares approximation to 
data (x,y) by “natural” cubic splines with break sequence b:

fnxtr(csape(b,y(:).'/ ...
    fnval(fnxtr(csape(b,eye(length(b)),'var')),x(:).'),'var'))

But it is, admittedly, a rather long line. 

The following code uses this correct formula and plots, in a thinner, red line, 
the resulting approximation on top of the earlier plots, as shown in Figure 9-1.
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 ss = fnxtr(csape(b,pop(:)'/ ...
  fnval(fnxtr(csape(b,eye(length(b)),'var')),cdate(:)'),'var'));
hold on, fnplt(ss,[1750,2050],1.2,'r'),grid, hold off
legend('incorrect approximation','population', ...
'correct approximation')

Least-Squares Approximation by Cubic Splines
The one-line solution works perfectly if you want to approximate by the space 
S of all cubic splines with the given break sequence b. You don’t even have to 
use the Spline Toolbox™ product for this since you can rely on the MATLAB® 
spline. You know that, with c a sequence containing two more entries than 
does b, spline(b,c) provides the unique cubic spline with break sequence b 
that takes the value c(i+1) at b(i), all i, and takes the slope c(1) at b(1), and 
the slope c(end) at b(end). Hence, spline(b,.) is a basis map for S.

More than that, you know that spline(b,c,xi) provides the value(s) at xi of 
this interpolating spline. Finally, you know that spline can handle 
vector-valued data. Therefore, the following one-line code constructs the 
least-squares approximation by cubic splines with break sequence b to data 
(x,y) :

spline(b,y(:)'/spline(b,eye(length(b)),x(:)'))
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A Nonlinear ODE
This section discusses these aspects of a nonlinear ODE problem:

• “Problem” on page 9-7

• “Approximation Space” on page 9-7

• “Discretization” on page 9-8

• “Numerical Problem” on page 9-8

• “Linearization” on page 9-8

• “Linear System to Be Solved” on page 9-9

• “Iteration” on page 9-10

The example can be run via the demo “Solving an ODE via Collocation”.

Problem
We consider the nonlinear singularly perturbed problem

Approximation Space
We seek an approximate solution by collocation from  piecewise cubics with 
a suitable break sequence; for instance, 

breaks = (0:4)/4;

Since cubics are of order 4, we have

k = 4;

and since  requires two smoothness conditions across each interior break, 
we want knot multiplicity = 4-2 = 2, hence use the knot sequence 

knots = sort([0 0 breaks breaks 1 1]);

which we could also have obtained as knots = augknt(breaks,4,2). This gives 
a quadruple knot at both 0 and 1, which is consistent with the fact that we have 
cubics, i.e., have order 4.

εD2g x( ) g x( )( )2 1 on [0..1]=+

Dg 0( ) g 1( ) 0= =

C1

C1
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This implies that we have

n = length(knots)-k
>> n = 10

i.e., 10 degrees of freedom.

Discretization
We collocate at two sites per polynomial piece, i.e., at eight sites altogether. 
This, together with the two side conditions, gives us 10 conditions, which 
matches the 10 degrees of freedom.

We choose the two Gaussian sites for each interval. For the standard interval 
[-.5,.5] of length 1, these are the two sites

gauss = [-1; 1]/(sqrt(3)*2);

From this, we obtain the whole collection of collocation sites by

ninterv = length(breaks)-1; 
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2); 
temp = temp([1 1],:) + gauss*diff(breaks); 
colpnts = temp(:).';

Numerical Problem
With this, the numerical problem we want to solve is to find  that 
satisfies the nonlinear system 

Linearization
If  is our current approximation to the solution, then the linear problem for 
the supposedly better solution  by Newton’s method reads 

y S4 knots,∈

y x( )( )2 ε+ D
2
y x( ) 1= for x colpnts∈

Dy 0( ) 0=

y 1( ) 0=

y
z
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with , . In fact, by choosing

and choosing all other values of  not yet specified to be zero, we 

can give our system the uniform shape

with 

sites = [0,colpnts,1]; 

Linear System to Be Solved
Since , we convert this last system into a system for the B-spline 
coefficients of . This requires the values, first, and second derivatives at every 

and for all the relevant B-splines. The command spcol was 
expressly written for this purpose. 

We use spcol to supply the matrix

colmat = ...
spcol(knots,k,brk2knt(sites,3));

From this, we get the collocation matrix by combining the row triple of colmat 
for  using the weights  to get the row for  of the actual 

matrix. For this, we need a current approximation . Initially, we get it by 
interpolating some reasonable initial guess from our piecewise-polynomial 

space at the sites. We use the parabola  (i.e., the function ) 
which satisfies the end conditions as the initial guess, and pick the matrix from 
the full matrix colmat. Here it is, in several cautious steps: 

Dz 0( ) 0=

w0 x( )z x( ) ε+ D2z x( ) b= x( ) for x colpnts∈

z 1( ) 0=

w0 x( ) 2y x( )= b x( ) y x( )( )2 1+=

w0 1( ) : 1= , w1 0( ) : 1=

w1 x( ): 0= , w2 x( ) : ε= for x colpnts∈

w0,w1,w2, b

w0 x( )z x( ) w1 x( )Dz x( ) w2 x( )D2z x( ) b x( ), for x sites∈=+ +

z S4 knots,∈
z

x sites∈

x w0 x( ) w1 x( ) w2 x( ), , x

y

()2 1– x x2→ -1
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intmat = colmat([2 1+(1:8)*3,1+9*3],:); 
coefs = intmat\[0 colpnts.*colpnts-1 0].'; 
y = spmak(knots,coefs.');

Iteration
We can now complete the construction and solution of the linear system for the 
improved approximate solution z from our current guess y. In fact, with the 
initial guess y available, we now set up an iteration, to be terminated when the 
change  is small enough. We choose a relatively mild . 

epsilon =.1;
tolerance=1.e-9;
while 1 
vtau=fnval(y,colpnts); 
weights = [0 1 0; 

[2*vtau.' zeros(8,1) repmat(epsilon,8,1)]; 
1 0 0]; 

colloc = zeros(10,10); 
for j=1:10 

colloc(j,:)=weights(j,:)*colmat(3*(j-1)+(1:3),:); 
end 
coefs = colloc\[0 vtau.*vtau+1 0].'; 
z = spmak(knots,coefs.'); 
maxdif = max(abs(z-y)) 

if maxdif<tolerance, break, end 
y = z; 

end

The resulting printout of the errors

maxdif = 0.2067 
maxdif = 0.0121 
maxdif = 3.9515e-005 
maxdif = 4.4322e-010

shows the quadratic convergence expected from Newton’s method. The plot 
below shows the initial guess and the computed solution, as the two leftmost 
curves. Note that the computed solution, like the exact solution, does not equal 
-1 at 0.

z y– ε .1=
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Figure 9-2:  Solutions of a Nonlinear ODE with Increasingly Strong Boundary 
Layer

If we now decrease , we create more of a boundary layer near the right 
endpoint, and this calls for a nonuniform mesh. 

We use newknt to construct an appropriate finer mesh from the current 
approximation: 

knots = newknt(z, ninterv+1); breaks = knt2brk(knots);
knots = augknt(breaks,4,2); 
n = length(knots)-k;

 From the new break sequence, we generate the new collocation site sequence:

ninterv = length(breaks)-1; 
temp = ((breaks(2:ninterv+1)+breaks(1:ninterv))/2); 
temp = temp([1 1], :) + gauss*diff(breaks); 
colpnts = temp(:).'; 
sites = [0,colpnts,1];

We use spcol to supply the matrix

colmat = spcol(knots,k,sort([sites sites sites]));

 and use our current approximate solution z as the initial guess: 
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intmat = colmat([2 1+(1:(n-2))*3,1+(n-1)*3],:); 
y = spmak(knots,[0 fnval(z,colpnts) 0]/intmat.');

Thus set up, we cut  by 3 and repeat the earlier calculation, starting with the 
statements

tolerance=1.e-9; 
while 1 
vtau=fnval(y,colpnts);
.
.
.

Repeated passes through this process generate a sequence of solutions, for 
= 1/10, 1/30, 1/90, 1/270, 1/810. The resulting solutions, ever flatter at 0 and 

ever steeper at 1, are shown in the plot above. The plot also shows the final 
break sequence, as a sequence of vertical bars.

In this example, at least, newknt has performed satisfactorily.

ε

ε



Construction of the Chebyshev Spline

9-13

Construction of the Chebyshev Spline
This section discusses these aspects of the Chebyshev spline construction:

• “What Is a Chebyshev Spline?” on page 9-13

• “Choice of Spline Space” on page 9-13

• “Initial Guess” on page 9-14

• “Remez Iteration” on page 9-15

What Is a Chebyshev Spline?
The Chebyshev spline  of order  for the knot sequence 

 is the unique element of  of max-norm 1 that 
maximally oscillates on the interval  and is positive near . 
This means that there is a unique strictly increasing -sequence  so that the 
function  given by , all , has max-norm 1 on 

. This implies that , and that , 
all . In fact, , all . This brings up the point that the knot 
sequence is assumed to make such an inequality possible, i.e., the elements of 

 are assumed to be continuous.

In short, the Chebyshev spline  looks just like the Chebyshev polynomial. It 
performs similar functions. For example, its extreme sites  are particularly 
good sites to interpolate at from  since the norm of the resulting projector 
is about as small as can be; see the toolbox command chbpnt.

In this example, which can be run via the demo “Construction of the Chebyshev 
Spline”, we try to construct  for a particular knot sequence .

Choice of Spline Space
We deal with cubic splines, i.e., with order 

k = 4;

and use the break sequence

breaks = [0 1 1.1 3 5 5.5 7 7.1 7.2 8];
lp1 = length(breaks); 

and use simple interior knots, i.e., use the knot sequence

t = breaks([ones(1,k) 2:(lp1-1) lp1(:,ones(1,k))]);

C Ct Ck t,= = k
t ti: i 1:n k+=( )= Sk t,

tk.. tn 1+[ ] tn 1+
n τ

C Ct= Sk t,∈ C τi( ) 1–( )n 1–= i
tk.. tn 1+[ ] τ1 tk τn, tn 1+= = ti τi tk i+< <

i ti 1+ τi ti k 1–+≤ ≤ i

Sk t,

C
τ

Sk t,

C t
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Note the quadruple knot at each end. Since k = 4, this makes 
[0..8] = [breaks(1)..breaks(lp1)] the interval  of interest, with 
n = length(t)-k the dimension of the resulting spline space . The same 
knot sequence would have been supplied by 

t=augknt(breaks,k);

Initial Guess
As our initial guess for the , we use the knot averages

 

recommended as good interpolation site choices. These are supplied by

tau=aveknt(t,k); 

We plot the resulting first approximation to , i.e., the spline  that satisfies 
, all : 

b = cumprod(repmat(-1,1,n)); b = b*b(end);
c = spapi(t,tau,b); 
fnplt(c,'-.') 
grid

Here is the resulting picture.

tk.. tn 1+[ ]
Sk,t

τ

τi ti 1+
... ti k 1–++ +( )/ k-1( )=

C c
c τi( ) 1–( )n i–= i
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Figure 9-3:  First Approximation to a Chebyshev Spline

Remez Iteration
Starting from this approximation, we use the Remez algorithm to produce a 
sequence of splines converging to . This means that we construct new  as 
the extrema of our current approximation  to  and try again. Here is the 
entire loop. 

We find the new interior  as the zeros of , i.e., the first derivative of , 
in several steps. First, we differentiate: 

Dc = fnder(c);

Next, we take the zeros of the control polygon of  as our first guess for the 
zeros of . For this, we must take apart the spline Dc. 

[knots,coefs,np,kp] = fnbrk(Dc,'knots','coefs','n','order');

The control polygon has the vertices (tstar(i),coefs(i)), with tstar the knot 
averages for the spline, provided by aveknt: 

tstar = aveknt(knots,kp);
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Here are the zeros of the resulting control polygon of Dc:

npp = (1:np-1); 
guess = tstar(npp) -coefs(npp).*(diff(tstar)./diff(coefs));

This provides already a very good first guess for the actual zeros.

We refine this estimate for the zeros of  by two steps of the secant method, 
taking tau and the resulting guess as our first approximations. First, we 
evaluate  at both sets: 

sites = tau(ones(4,1),2:n-1); 
sites(1,:) = guess; 
values = zeros(4,n-2); 
values(1:2,:) = reshape(fnval(Dc,sites(1:2,:)),2,n-2);

Now come two steps of the secant method. We guard against division by zero 
by setting the function value difference to 1 in case it is zero. Since  is 
strictly monotone near the sites sought, this is harmless: 

for j=2:3 
rows = [j,j-1];Dcd=diff(values(rows,:));
Dcd(find(Dcd==0)) = 1; 
sites(j+1,:) = sites(j,:) ... 

-values(j,:).*(diff(sites(rows,:))./Dcd); 
values(j+1,:) = fnval(Dc,sites(j+1,:)); 

end

The check

max(abs(values.')) 
ans = 4.1176 5.7789 0.4644 0.1178

shows the improvement.

Now we take these sites as our new tau,

tau = [tau(1) sites(4,:) tau(n)];

and check the extrema values of our current approximation there: 

extremes = abs(fnval(c, tau));

The difference

max(extremes)-min(extremes)
ans = 0.6905

is an estimate of how far we are from total leveling. 

Dc

Dc

Dc
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We construct a new spline corresponding to our new choice of tau and plot it on 
top of the old: 

c = spapi(t,tau,b); 
sites = sort([tau (0:100)*(t(n+1)-t(k))/100]); 
values = fnval(c,sites); 
hold on, plot(sites,values)

Here is the resulting picture.

Figure 9-4:  A More Nearly Level Spline

If this is not close enough, one simply reiterates the loop. For this example, the 
next iteration already produces  to graphic accuracy.
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Approximation by Tensor Product Splines
Since the toolbox can handle splines with vector coefficients, it is easy to 
implement interpolation or approximation to gridded data by tensor product 
splines, as the following illustration is meant to show. This example can also 
be run via the demo “Bivariate Tensor Product Splines”.

To be sure, most tensor product spline approximation to gridded data can be 
obtained directly with one of the spline construction commands, like spapi or 
csape, in this toolbox, without concern for the details discussed in this 
example. Rather, this example is meant to illustrate the theory behind the 
tensor product construction, and this will be of help in situations not covered 
by the construction commands in this toolbox.

This section discusses these aspects of the tensor product spline problem:

• “Choice of Sites and Knots” on page 9-18

• “Least Squares Approximation as Function of y” on page 9-19

• “Approximation to Coefficients as Functions of x” on page 9-20

• “It provides the bivariate spline approximation” on page 9-21

• “Switch in Order” on page 9-23

• “Approximation to Coefficients as Functions of y” on page 9-24

• “The Bivariate Approximation” on page 9-25

• “Comparison and Extension” on page 9-26

Choice of Sites and Knots
Consider, for example, least squares approximation to given data 

. We take the data from a function used 
extensively by Franke for the testing of schemes for surface fitting (see R. 
Franke, “A critical comparison of some methods for interpolation of scattered 
data,” Naval Postgraduate School Techn. Rep. NPS-53-79-003, March 1979). 
Its domain is the unit square. We choose a few more data sites in the 

-direction than the -direction; also, for a better definition, we use higher 
data density near the boundary.

x = sort([(0:10)/10,.03 .07, .93 .97]);
y = sort([(0:6)/6,.03 .07, .93 .97]);
[xx,yy] = ndgrid(x,y); z = franke(xx,yy);

z i j,( ) f x i( ) y j( ),( )= i 1:Nx= j 1:Ny=, ,

x y
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Least Squares Approximation as Function of y
We treat these data as coming from a vector-valued function, namely, the 
function of  whose value at  is the vector , all . For no particular 
reason, we choose to approximate this function by a vector-valued parabolic 
spline, with three uniformly spaced interior knots. This means that we choose 
the spline order and the knot sequence for this vector-valued spline as

ky = 3; knotsy = augknt([0,.25,.5,.75,1],ky);

and then use spap2 to provide us with the least squares approximant to the 
data: 

sp = spap2(knotsy,ky,y,z);

In effect, we are finding simultaneously the discrete least squares 
approximation from  to each of the Nx data sets

In particular, the statements

yy = -.1:.05:1.1; vals = fnval(sp,yy);

provide the array vals, whose entry  can be taken as an 
approximation to the value  of the underlying function  at the 
mesh-point  since  is the value at  of the 
approximating spline curve in sp.

This is evident in the following figure, obtained by the command:

mesh(x,yy,vals.'), view(150,50)

Note the use of vals.', in the mesh command, needed because of the MATLAB 
matrix-oriented view when plotting an array. This can be a serious problem in 
bivariate approximation since there it is customary to think of  as the 
function value at the point , while MATLAB thinks of  as the 
function value at the point . 

y y j( ) z : j,( ) j

Sky,knotsy

y j( ) z, i j,( )( )j 1=
Ny , i 1= :Nx

vals i j,( )
f x i( ) yy j( ),( ) f

x i( ) yy j( ),( ) vals : j,( ) yy j( )

z i j,( )
x i( ) y j( ),( ) z i j,( )
x j( ) y i( ),( )
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Figure 9-5:  A Family of Smooth Curves Pretending to Be a Surface

Note that both the first two and the last two values on each smooth curve are 
actually zero since both the first two and the last two sites in yy are outside the 
basic interval for the spline in sp.

Note also the ridges. They confirm that we are plotting smooth curves in one 
direction only.

Approximation to Coefficients as Functions of x
To get an actual surface, we now have to go a step further. Look at the 
coefficients coefsy of the spline in sp: 

coefsy = fnbrk(sp,'c');

Abstractly, you can think of the spline in sp as the function

with the th entry  of the vector coefficient  
corresponding to , all . This suggests approximating each coefficient 
vector  by a spline of the same order kx and with the same 
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appropriate knot sequence knotsx. Again for no particular reason, we choose 
this time to use cubic splines with four uniformly spaced interior knots: 

kx = 4; knotsx = augknt([0:.2:1],kx); 
sp2 = spap2(knotsx,kx,x,coefsy.');

Note that spap2(knots,k,x,fx) expects fx(:,j) to be the datum at x(j), i.e., 
expects each column of fx to be a function value. Since we wanted to fit the 
datum  at , all , we had to present spap2 with the transpose 
of coefsy.

The Bivariate Approximation
Now consider the transpose of the coefficients cxy of the resulting spline curve: 

coefs = fnbrk(sp2,'c').';

It provides the bivariate spline approximation

to the original data

To plot this spline surface over a grid, e.g., the grid

xv = 0:.025:1; yv = 0:.025:1;

you can do the following: 

values = spcol(knotsx,kx,xv)*coefs*spcol(knotsy,ky,yv).'; 
mesh(xv,yv,values.'), view(150,50);

This results in the following figure.

coefsy : r,( ) x r( ) r

coefs
r
∑

q
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Figure 9-6:  Spline Approximation to Franke’s Function

This makes good sense since spcol(knotsx,kx,xv) is the matrix whose 
th entry equals the value  at  of the th B-spline of 

order kx for the knot sequence knotsx. 

Since the matrices spcol(knotsx,kx,xv) and spcol(knotsy,ky,yv) are 
banded, it may be more efficient, though perhaps more memory-consuming, for 
large xv and yv to make use of fnval, as follows: 

value2 = ... 
fnval(spmak(knotsx,fnval(spmak(knotsy,coefs),yv).'),xv).';

This is, in fact, what happens internally when fnval is called directly with a 
tensor product spline, as in 

value2 = fnval(spmak({knotsx,knotsy},coefs),{xv,yv});

Here is the calculation of the relative error, i.e., the difference between the 
given data and the value of the approximation at those data sites as compared 
with the magnitude of the given data: 

errors = z - spcol(knotsx,kx,x)*coefs*spcol(knotsy,ky,y).'; 
disp( max(max(abs(errors)))/max(max(abs(z))) ) 
0.0539
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This is perhaps not too impressive. On the other hand, we used only a 
coefficient array of size

disp(size(coefs)) 
8 6

to fit a data array of size

disp(size(z)) 
15 11

Switch in Order
The approach followed here seems biased, in the following way. We first think 
of the given data z as describing a vector-valued function of , and then we 
treat the matrix formed by the vector coefficients of the approximating curve 
as describing a vector-valued function of .

What happens when we take things in the opposite order, i.e., think of z as 
describing a vector-valued function of , and then treat the matrix made up 
from the vector coefficients of the approximating curve as describing a 
vector-valued function of ?

Perhaps surprisingly, the final approximation is the same, up to roundoff. Here 
is the numerical experiment.

Least Squares Approximation as Function of x
First, we fit a spline curve to the data, but this time with  as the independent 
variable, hence it is the rows of z that now become the data values. 
Correspondingly, we must supply z.', rather than z, to spap2, 

spb = spap2(knotsx,kx,x,z.');

thus obtaining a spline approximation to all the curves . In 
particular, the statement 

valsb = fnval(spb,xv).';

provides the matrix valsb, whose entry  can be taken as an 
approximation to the value  of the underlying function  at the 
mesh-point . This is evident when we plot valsb using mesh:

mesh(xv,y,valsb.'), view(150,50)

y

x

x

y

x

x;z : j,( )( )

valsb i j,( )
f xv i( ) y j( ),( ) f

xv i( ) y j( ),( )
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Figure 9-7:  Another Family of Smooth Curves Pretending to Be a Surface

Note the ridges. They confirm that we are, once again, plotting smooth curves 
in one direction only. But this time the curves run in the other direction.

Approximation to Coefficients as Functions of y
Now comes the second step, to get the actual surface. First, extract the 
coefficients: 

coefsx = fnbrk(spb,'c');

Then fit each coefficient vector coefsx(r,:) by a spline of the same order ky 
and with the same appropriate knot sequence knotsy: 

spb2 = spap2(knotsy,ky,y,coefsx.');

Note that, once again, we need to transpose the coefficient array from spb, since 
spap2 takes the columns of its last input argument as the data values. 

Correspondingly, there is now no need to transpose the coefficient array coefsb 
of the resulting curve: 

coefsb = fnbrk(spb2,'c');
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The Bivariate Approximation
The claim is that coefsb equals the earlier coefficient array coefs, up to 
round-off, and here is the test:

disp( max(max(abs(coefs - coefsb))) ) 
1.4433e-15

The explanation is simple enough: The coefficients c of the spline  contained 
in sp = spap2(knots,k,x,y) depend linearly on the input values . This 
implies, given that both c and y are 1-row matrices, that there is some matrix 

 so that

for any data y. This statement even holds when y is a matrix, of size -by− , 
say, in which case each datum  is taken to be a point in , and the 
resulting spline is correspondingly -vector-valued, hence its coefficient array 
c is of size -by-n, with n = length(knots)-k.

In particular, the statements

sp = spap2(knotsy,ky,y,z); 
coefsy =fnpbrk(sp,'c');

provide us with the matrix coefsy that satisfies

The subsequent computations 

sp2 = spap2(knotsx,kx,xx,coefsy.'); 
coefs = fnbrk(sp2,'c').';

generate the coefficient array coefs, which, taking into account the two 
transpositions, satisfies

In the second, alternative, calculation, we first computed

spb = spap2(knotsx,kx,x,z.'); 
coefsx = fnbrk(spb,'c');

s
y

A Aknots k x, ,=

c y*Aknots k x, ,=

d N
y : j,( ) Rd

d
d

coefsy z*Aknotsy ky y, ,=

coefs z*Aknotsy ky y, ,( ) '*Aknotsx kx x, ,( )'=

Aknotsx kx x, ,( ) '*z*Aknotsy ky y, ,=
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hence . The subsequent calculation 

spb2 = spap2(knotsy,ky,y,coefsx.');
coefsb = fnbrk(spb,'c');

then provided 

Consequently, coefsb = coefs.

Comparison and Extension
The second approach is more symmetric than the first in that transposition 
takes place in each call to spap2 and nowhere else. This approach can be used 
for approximation to gridded data in any number of variables. 

If, for example, the given data over a three-dimensional grid are contained in 
some three-dimensional array v of size [Nx,Ny,Nz], with v(i,j,k) containing 
the value , then we would start off with

coefs = reshape(v,Nx,Ny*Nz);

Assuming that nj = knotsj - kj, for j = x,y,z, we would then proceed as follows:

sp = spap2(knotsx,kx,x,coefs.');
coefs = reshape(fnbrk(sp,'c'),Ny,Nz*nx);
sp = spap2(knotsy,ky,y,coefs.'); 
coefs = reshape(fnbrk(sp,'c'),Nz,nx*ny);
sp = spap2(knotsz,kz,z,coefs.'); 
coefs = reshape(fnbrk(sp,'c'),nx,ny*nz);

See Chapter 17 of PGS or [C. de Boor, “Efficient computer manipulation of 
tensor products,” ACM Trans. Math. Software 5 (1979), 173–182; Corrigenda, 
525] for more details. The same references also make clear that there is nothing 
special here about using least squares approximation. Any approximation 
process, including spline interpolation, whose resulting approximation has 
coefficients that depend linearly on the given data, can be extended in the same 
way to a multivariate approximation process to gridded data.

This is exactly what is used in the spline construction commands csapi, csape, 
spapi, spaps, and spap2, when gridded data are to be fitted. It is also used in 
fnval, when a tensor product spline is to be evaluated on a grid.

coefsx z'*Aknotsx kx x, ,=

coefsb coefsx.'*Aknotsy ky y, , Aknotsx kx x, ,( ).'*z*Aknotsy ky y, ,= =

f x(i),y(j),z(k)( )
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Function Reference

Functions — By Category (p. 10-2) Lists the Spline Toolbox™ functions according to their 
purpose. Not all the entries in the initial listing actually have 
a reference page. Those that do not, appear in parentheses in 
this listing.

Reference Pages (p. 10-6) Lists the Spline Toolbox functions alphabetically.
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Functions — By Category

“GUIs” on page 10-3 Graphical interfaces that enable you to experiment with 
splines

“Construction of Splines” on page 10-3 Create splines that satisfy conditions you specify

“Operators” on page 10-3 Evaluate, plot, differentiate, integrate, find the zeros or 
the extrema of, or otherwise make use of, splines

“Work with Breaks, Knots, and Sites” 
on page 10-4

Generate or modify breaks, knots, sites, or locate sites 
within a break or knot sequence

“Customized Linear Equation Solver” 
on page 10-5

Linear equation solver customized for spline work

“Information About Splines and the 
Toolbox” on page 10-5

Information about splines and the toolbox

“Utilities” on page 10-5 Something for experts
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GUIs

Construction of Splines

Operators

bspligui Experiment with B-spline as function of its knots

splinetool Experiment with some spline approximation methods

csape Cubic spline interpolation with end conditions

csapi Cubic spline interpolation

csaps Cubic smoothing spline

cscvn ‘Natural’ or periodic interpolating cubic spline curve

getcurve Interactive creation of cubic spline curve

ppmak Put together spline in ppform

rpmak Put together rational spline in rpform

rscvn Piecewise biarc Hermite interpolation

rsmak Put together rational spline in rBform

spapi Spline interpolation

spaps Smoothing spline

spap2 Least-squares spline approximation

spcrv Spline curve by uniform subdivision

spmak Put together spline in B-form

stmak Put together function in stform

tpaps Thin-plate smoothing spline

fnbrk Name and part(s) of form

fnchg Change part(s) of form

fncmb Arithmetic with function(s)
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Work with Breaks, Knots, and Sites

fnder Differentiate function

fndir Directional derivative of function

fnint Integrate function

fnjmp Jumps, i.e., f(x+)-f(x-)

fnmin Minimum of function in given interval

fnplt Plot function

fnrfn Refine partition of form

fntlr Taylor coefficients or polynomial

fnval Evaluate function

fnxtr Extrapolate function

fnzeros Zeros of continuous function in given interval

fn2fm Convert to specified form

aptknt Acceptable knot sequence

augknt Augment knot sequence

aveknt Provide knot averages

brk2knt Convert breaks with multiplicities into knots

chbpnt Good data sites, Chebyshev-Demko points

knt2brk Convert knots to breaks and their multiplicities

knt2mlt Knot multiplicities

newknt New break distribution

optknt Knot distribution ‘optimal’ for interpolation

sorted Locate sites with respect to meshsites
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Customized Linear Equation Solver

Information About Splines and the Toolbox  

Utilities 

bkbrk Part(s) of almost block-diagonal matrix

slvblk Solve almost block diagonal linear system

bspline Display B-spline and its polynomial pieces

spterms Explanation of Spline Toolbox™ terms

franke Franke's bivariate test function

spcol B-spline collocation matrix

splpp Left Taylor coefficients from local B-coefficients

sprpp Right Taylor coefficients from local B-coefficients

stcol Scattered translates collocation matrix

subplus Positive part

titanium Titanium heat data
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Reference Pages
This section contains Spline Toolbox™ reference pages, listed alphabetically. 
For ease of use, most toolbox functions have default arguments. In the 
reference entry under Syntax, we usually first list the function with all 
necessary input arguments and then with all possible input arguments. When 
there is more than one optional argument, then, sometimes, but not always, 
their exact order is immaterial. When their order does matter, you have to 
specify every optional argument preceding the one(s) you are interested in. In 
this situation, you can specify the default value for an optional argument by 
using [] (the empty matrix) as the input for it. The description in the reference 
page tells you the default value for each optional input argument.

As in MATLAB®, only the output arguments explicitly specified are returned 
to the user.
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10aptkntPurpose Acceptable knot sequence

Syntax knots = aptknt(tau,k)
[knots,k] = aptknt(tau,k)

Description knots = aptknt(tau,k) returns a knot sequence suitable for interpolation at 
the data sites tau by splines of order k with that knot sequence, provided tau 
has at least k entries, is nondecreasing, and satisfies tau(i)<tau(i+k-1) for 
all i. In that case,  there is exactly one spline of order k with knot sequence 
knots that matches given values at those sites. This is so because the sequence 
knots returned satisfies the Schoenberg-Whitney conditions

knots(i) < tau(i) < knots(i+k),  i=1:length(tau)

with equality only at the extreme knots, each of which occurs with exact 
multiplicity k.

If tau has fewer than k entries, then k is reduced to the value length(tau). An 
error results if tau fails to be nondecreasing and/or tau(i) equals tau(i+k-1) 
for some i.

[knots,k] = aptknt(tau,k) also returns the actual k used (which equals the 
smaller of the input k and length(tau)).

Examples If tau is equally spaced, e.g., equal to linspace(a,b,n) for some n>=4, and y is 
a sequence of the same size as tau, then sp = spapi(aptknt(tau,4),tau,y) 
gives the cubic spline interpolant with the not-a-knot end condition. This is the 
same cubic spline as produced by the command spline(tau,y), but in B-form 
rather than ppform.

Algorithm The (k-1)-point averages sum(tau(i+1:i+k-1))/(k-1) of the sequence tau, as 
supplied by aveknt(tau,k), are augmented by a k-fold tau(1) and a k-fold 
tau(end). In other words, the command gives the same result as 
augknt([tau(1),aveknt(tau,k),tau(end)],k), provided tau has at least k 
entries and k is greater than 1.

See Also augknt, aveknt, newknt, optknt
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Cautionary 
Note 

If tau is very nonuniform, then use of the resulting knot sequence for 
interpolation to data at the sites tau may lead to unsatisfactory results.
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10augkntPurpose Augment knot sequence

Syntax augknt(knots,k)
augknt(knots,k,mults)
[augknot,addl] = augknt(...)

Description augknt(knots,k) returns a nondecreasing and augmented knot sequence that 
has the first and last knot with exact multiplicity k. (This may actually shorten 
the knot sequence.) )

augknt(knots,k,mults) makes sure that the augmented knot sequence 
returned will, in addition, contain each interior knot mults times. If mults has 
exactly as many entries as there are interior knots, then the th one will 
appear  times. Otherwise, the uniform multiplicity mults(1) is used. 
If knots is strictly increasing, this ensures that the splines of order k with knot 
sequence augknot satisfy k-mults(j) smoothness conditions across 
knots(j+1), j=1:length(knots)-2.

[augknot,addl] = augknt(...) also returns the number addl of knots added 
on the left. (This number may be negative.)

Examples If you want to construct a cubic spline on the interval [a..b], with two 
continuous derivatives, and with the interior break sequence xi, then 
augknt([a,b,xi],4) is the knot sequence you should use.

If you want to use Hermite cubics instead, i.e., a cubic spline with only one 
continuous derivative, then the appropriate knot sequence is 
augknt([a,xi,b],4,2).

augknt([1 2 3 3 3],2) returns the vector [1 1 2 3 3], as does 
augknt([3 2 3 1 3],2). In either case, addl would be 1. 

j
mults j( )
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10avekntPurpose Provide knot averages

Syntax tstar = aveknt(t,k)

Description tstar = aveknt(t,k)  returns the averages of successive k-1 knots, i.e., the 
sites

which are recommended as good interpolation site choices when interpolating 

from splines of order k with knot sequence .

Examples aveknt([1 2 3 3 3],3) returns the vector [2.5000 3.0000], while 
aveknt([1 2 3],3) returns the empty vector. 

With k and the strictly increasing sequence breaks given, the statements

t = augknt(breaks,k); x = aveknt(t);
sp = spapi(t,x,sin(x));

provide a spline interpolant to the sine function on the interval 
[breaks(1)..breaks(end)].

For sp the B-form of a scalar-valued univariate spline function, and with tstar 
and a computed as

tstar = aveknt(fnbrk(sp,'knots'),fnbrk(sp,'order'));
a = fnbrk(sp,'coefs');

the points  constitute the control points of the spline, i.e., the 
vertices of the spline’s control polygon.

See Also aptknt, chbpnt, optknt

t∗i : ti 1+
… ti k 1–++ +( ) k 1–( )⁄= , i 1= :n

t ti( )i 1=
n k+=

tstar i( ) a i( ),( )
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10bkbrkPurpose Part(s) of  almost block-diagonal matrix

Syntax [nb,rows,ncols,last,blocks] = bkbrk(blokmat)
bkbrk(blokmat)

Description [nb,rows,ncols,last,blocks] = bkbrk(blokmat)  returns the details of the 
almost block-diagonal matrix contained in blokmat, with rows and last 
nb-vectors, and blocks a matrix of size [sum(rows),ncols]. 

This utility program is not likely to be of interest to the casual user. It is used 
in slvblk to decode the information, provided by spcol, about a spline 
collocation matrix in an almost block diagonal form especially suited for 
splines. But bkbrk can also decode the almost block-diagonal form used in [1].

bkbrk(blokmat) returns nothing, but the details are printed out. This is of use 
when trying to understand what went wrong with such a matrix.

See Also slvblk, spcol

References [1] C. de Boor and R. Weiss, “SOLVEBLOK: A package for solving almost block 
diagonal linear systems,” ACM Trans. Mathem. Software 6 (1980), 80 – 87.
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10brk2kntPurpose Convert breaks with multiplicities into knots

Syntax [knots,index] = brk2knt(breaks,mults)

Description [knots,index] = brk2knt(breaks,mults) returns the sequence knots that is 
the sequence breaks but with breaks(i) occurring mults(i) times, all i. In 
particular, breaks(i) will not appear unless mults(i)>0. If, as one would 
expect, breaks is a strictly increasing sequence, then knots contains each 
breaks(i) exactly mults(i) times.

If mults does not have exactly as many entries as does breaks, then all 
mults(i) are set equal to mults(1).

If, as one would expect, breaks is strictly increasing and all multiplicities are 
positive, then, for each i, index(i) is the first place in knots at which 
breaks(i) appears.

Examples The statements

t = [1 1 2 2 2 3 4 5 5];
[xi,m] = knt2brk(t);
tt = brk2knt(xi,m)

 give [1 2 3 4 5] for xi, [2 3 1 1 2] for m, and, finally, t for tt.

See Also augknt, knt2brk, knt2mlt
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10bspliguiPurpose Experiment with B-spline as function of its knots

Syntax bspligui

Description bspligui  starts a graphical user interface (GUI) for exploring how a B-spline 
depends on its knots. As you add, move, or delete knots, you see the B-spline 
and its first three derivatives change accordingly.

You observe the following basic facts about the B-spline with knot sequence 
:

• The B-spline is positive on the open interval . It is zero at the end 
knots,  and , unless they are knots of multiplicity k. The B-spline is also 
zero outside the closed interval , but that part of the B-spline is not 
shown in the GUI.

• Even at its maximum, the B-spline is never bigger than 1. It reaches the 
value 1 inside the interval  only at a knot of multiplicity at least 

. On the other hand, that maximum cannot be arbitrarily small; it 
seems smallest when there are no interior knots.

•  The B-spline is piecewise polynomial of order , i.e., its polynomial pieces 
all are of degree . For , you can even observe that all its 
nonzero polynomial pieces are of exact degree k-1, by looking at the first 
three derivatives of the B-spline. This means that the degree goes up/down 
by 1 every time you add/delete a knot.

• Each knot   is a break for the B-spline, but it is permissible for several 
knots to coincide. Therefore, the number of nontrivial polynomial pieces is 
maximally  (when all the knots are different) and minimally 1 (when there 
are no “interior” knots), and any number between 1 and  is possible.

• The smoothness of the B-spline across a break depends on the multiplicity of 
the corresponding knot. If the break occurs in the knot sequence  times, 
then the th derivative of the B-spline has a jump across that break, 
while all derivatives of order lower than  are continuous across that 
break. Thus, by varying the multiplicity of a knot, you can control the 
smoothness of the B-spline across that knot.

• As one knot approaches another, the highest derivative that is continuous 
across both develops a jump and the higher derivatives become unbounded. 
But nothing dramatic happens in any of the lower-order derivatives.

t0
… tk≤ ≤

t0..tk( )
t0 tk

t0..tk[ ]

t0..tk( )
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k
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• The B-spline is bell-shaped in the following sense: if the first derivative is not 
identically zero, then it has exactly one sign change in the interval , 
hence the B-spline itself is unimodal, meaning that it has exactly one 
maximum. Further, if the second derivative is not identically zero, then it 
has exactly two sign changes in that interval. Finally, if the third derivative 
is not identically zero, then it has exactly three sign changes in that interval. 
This illustrates the fact that, for , if the th derivative is not 
identically zero, then it has exactly  sign changes in the interval ; 
it is this property that is meant by the term “bell-shaped”. For this claim to 
be strictly true, one has to be careful with the meaning of “sign change” in 
case there are knots with multiplicities. For example, the st 
derivative is piecewise constant, hence it cannot have  sign changes in 
the straightforward sense unless there are  polynomial pieces, i.e., unless 
all the knots are simple.

See Also bspline, chbpnt, spcol

t0..tk( )

j 0: k 1–= j
j t0..tk( )

k 1–( )
k 1–

k
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10bsplinePurpose B-spline and its polynomial pieces 

Syntax bspline(t)
bspline(t,window)
pp = bspline(t)

Description bspline(t) plots , i.e., the B-spline with knot sequence t, as well as 
the polynomial pieces of which it is composed.

bspline(t,window) does the plotting in the subplot window specified by 
window; see the MATLAB® command subplot for details.

pp = bspline(t) plots nothing but returns the ppform of the B-spline. 

Examples The statement pp=fn2fm(spmak(t,1),'pp') has the same effect as the 
statement pp=bspline(t).

See Also  bspligui

B •|t( )
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10chbpntPurpose Good data sites, Chebyshev-Demko points

Syntax tau = chbpnt(t,k)
chbpnt(t,k,tol)
[tau,sp] = chbpnt(...)

Description tau = chbpnt(t,k) are the extreme sites of the Chebyshev spline of order k 
with knot sequence t. These are particularly good sites at which to interpolate 
data by splines of order k with knot sequence t because the resulting 
interpolant is often quite close to the best uniform approximation from that 
spline space to the function whose values at tau are being interpolated.

chbpnt(t,k,tol)  also specifies the tolerance tol to be used in the iterative 
process that constructs the Chebyshev spline. This process is terminated when 
the relative difference between the absolutely largest and the absolutely 
smallest local extremum of the spline is smaller than tol. The default value for 
tol is .001.

[tau,sp] = chbpnt(...) also returns, in sp, the Chebyshev spline.

Examples chbpnt([-ones(1,k),ones(1,k)],k) provides (approximately) the extreme 
sites on the interval [-1 .. 1] of the Chebyshev polynomial of degree k-1.

If you have decided to approximate the square-root function on the interval 
[0 .. 1] by cubic splines, with knot sequence t as given by

   k = 4; n = 10; t = augknt(((0:n)/n).^8,k);

then a good approximation to the square-root function from that specific spline 
space is given by

   x = chbpnt(t,k); sp = spapi(t,x,sqrt(x));

as is evidenced by the near equi-oscillation of the error.

Algorithm The Chebyshev spline for the given knot sequence and order is constructed 
iteratively, using the Remez algorithm, using as initial guess the spline that 
takes alternately the values 1 and -1 at the sequence aveknt(t,k). The demo 
Constructing the Chebyshev Spline  gives a detailed discussion of one 

version of the process as applied to a particular example.
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See Also aveknt 
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10csapePurpose Cubic spline interpolation with end conditions 

Syntax pp = csape(x,y)
pp = csape(x,y,conds)

Description pp = csape(x,y) is the ppform of a cubic spline s with knot sequence x that 
satisfies s(x(j)) = y(:,j) for all j, as well as an additional end condition at 
the ends (meaning the leftmost and at the rightmost data site), namely the 
default condition listed below. The data values y(:,j) may be scalars, vectors, 
matrices, even ND-arrays. Data values at the same data site are averaged.

pp = csape(x,y,conds) lets you choose the end conditions to be used, from a 
rather large and varied catalog, by proper choice of conds. If needed, you supply 
the corresponding end condition values as additional data values, with the first 
(last) data value taken as the end condition value at the left (right) end. In 
other words, in that case, s(x(j)) matches y(:,j+1) for all j, and the variable 
endcondvals used in the detailed description below is set to y(:,[1 end]). For 
some choices of conds, these end condition values need not be present and/or 
are ignored when present.

conds may be a string whose first character matches one of the following: 
'complete' or 'clamped', 'not-a-knot', 'periodic', 'second', 
'variational', with the following meanings.

'complete' or 
'clamped'

Match endslopes (as given, with default as under 
“default’’).

'not-a-knot' Make second and second-last sites inactive knots 
(ignoring end condition values if given).

'periodic' Match first and second derivatives at left end with those 
at right end.

'second' Match end second derivatives (as given, with default [0 0], 
i.e., as in 'variational').

'variational' Set end second derivatives equal to zero (ignoring end 
condition values if given).

default Match endslopes to the slope of the cubic that matches the 
first four data at the respective end (i.e., Lagrange).
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By giving conds as a 1-by-2 matrix instead, it is possible to specify different 
conditions at the two ends. Explicitly, the th derivative, , is given the 
value endcondvals(:, ) at the left (  is 1) respectively right (  is 2) end in case 

 is . There are default values for conds and/or 
endcondvals. 

Available conditions are:

Here,  is  (  is ), i.e., the left (right) end, in case j is 1 (j is 2), and (in the 
Lagrange condition)  is the cubic polynomial that interpolates to the given 
data at  and the three sites nearest . 

If conds(j) is not specified or is different from 0, 1, or 2, then it is taken to be 
1 and the corresponding endcondvals(:,j) is taken to be the corresponding 
default value. 

The default value for endcondvals(:,j) is the derivative of the cubic interpolant 
at the nearest four sites in case conds(j) is 1, and is 0 otherwise.

It is also possible to handle gridded data, by having x be a cell array containing 
 univariate meshes and, correspondingly, having y be an -dimensional 

array (or an -dimensional array if the function is to be -valued). 
Correspondingly, conds is a cell array with  entries, and end condition 
values may be correspondingly supplied in each of the m variables. This, as the 
last example below, of bicubic spline interpolation, makes clear, may require 
you to supply end conditions for end conditions. 

This command calls on a much expanded version of the Fortran routine CUBSPL 
in PGS.

clamped  = endcondvals(:,j) if conds(j) == 1

curved  = endcondvals(:,j) if conds(j) == 2

Lagrange default 

periodic if conds == [0  0]

variational if conds(j) == 2 & 
endcondvals(:,j) == 0 

i D is
j j j

conds j( ) i i 1:2=,

Ds e( )

D2s e( )

Ds e( ) Dp e( )=

Drs a( ) Drs b( )= r 1 2,=,

D2s e( ) 0=

e a e b
p

e e

m m
m r+ r

m
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Examples csape(x,y) provides the cubic spline interpolant with the Lagrange end 
conditions, while csape(x,y,[2 2]) provides the variational, or natural cubic 
spline interpolant, as does csape(x,y,'v'). 
csape([-1 1],[3 -1 1 6],[1 2]) provides the cubic polynomial  for which 

, , , , i.e.,  . 
Finally, csape([-1 1],[-1 1]) provides the straight line p for which 
p(±1) = ±1, i.e., .

End conditions other than the ones listed earlier can be handled along the 
following lines. Suppose that we want to enforce the condition

for given scalars , , and , and with  equal to x(1). Then one could compute 
the cubic spline interpolant  to the given data using the default end condition 
as well as the cubic spline interpolant  to zero data and some (nontrivial) end 
condition at , and then obtain the desired interpolant in the form

Here are the (not inconsiderable) details (in which the first polynomial piece of 
 and  is pulled out to avoid differentiating all of  and ): 

pp1 = csape(x,y);
dp1 = fnder(fnbrk(pp1,1)); 
pp0 = csape(x,[1,zeros(1,length(y)),0],[1,0]); 
dp0 = fnder(fnbrk(pp0,1));
e = x(1); 
lam1 = a*fnval(dp1,e) + b*fnval(fnder(dp1),e); 
lam0 = a*fnval(dp0,e) + b*fnval(fnder(dp0),e);
pp = fncmb(pp0,(c-lam1)/lam0,pp1);

As a multivariate vector-valued example, here is a sphere, done as a 
parametric bicubic spline, 3D-valued, using prescribed slopes in one direction 
and periodic end conditions in the other:

x = 0:4; y=-2:2; s2 = 1/sqrt(2);
clear v
v(3,:,:) = [0 1 s2 0 -s2 -1 0].'*[1 1 1 1 1];
v(2,:,:) = [1 0 s2 1 s2 0 -1].'*[0 1 0 -1 0];
v(1,:,:) = [1 0 s2 1 s2 0 -1].'*[1 0 -1 0 1];

p
Dp 1–( ) 3= p 1–( ) 1–= p 1( ) 1= D2p 1( ) 6= p x( ) x3=

p x( ) x=

λ s( ) := aDs e( ) bD2s e( )+ c=

a b c e
s1

s0
e

s s1= c λ–( ) s1( )( ) λ s0( )⁄ s0+

s1 s0 s1 s0
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sph = csape({x,y},v,{'clamped','periodic'});
values = fnval(sph,{0:.1:4,-2:.1:2});
surf(squeeze(values(1,:,:)),squeeze(values(2,:,:)),... 
squeeze(values(3,:,:))); axis equal, axis off

The lines involving fnval and surf could have been replaced by the simple 
command: fnplt(sph). Note that v is a 3-dimensional array, with v(:,i+1,j) 
the 3-vector to be matched at (x(i),y(j)), i=1:5, j=1:5. Note further that, 
in accordance with conds{1} being 'clamped', size(v,2) is 7 (and not 5), with 
the first and last entry of v(r,:,j) specifying the end slopes to be matched.

Here is a bivariate example that shows the need for supplying end conditions 
of end conditions when supplying end conditions in both variables. We 
reproduce the bicubic polynomial g(x,y) = x^3y^3 by complete bicubic 
interpolation. We derive the needed data, including end condition values, 
directly from g in order to make it easier for you to see just how the end 
condition values must be placed. We also check the result.

sites = {[0 1],[0 2]}; coefs = zeros(4,4); coefs(1,1) = 1;
g = ppmak({bx,by},coefs);
Dxg = fnval(fnder(g,[1 0]),sites);
Dyg = fnval(fnder(g,[0 1]),sites);
Dxyg = fnval(fnder(g,[1 1]),sites);
f = csape(sites,[Dxyg(1,1),   Dxg(1,:),    Dxyg(1,2); ...
                 Dyg(:,1), fnval(g,sites), Dyg(:,2) ; ...
                 Dxyg(2,1),   Dxg(2,:),    Dxyg(2,2)], ...
                                          {'complete','complete'});
if any(squeeze(fnbrk(f,'c'))-coefs), 'this is wrong', end

Algorithm The relevant tridiagonal linear system is constructed and solved using the 
sparse matrix capabilities of MATLAB®.

See Also csapi, spapi, spline

Cautionary 
Note

csape recognizes that you supplied explicit end condition values by the fact 
that you supplied exactly two more data values than data sites. In particular, 
even when using different end conditions at the two ends, if you wish to supply 
an end condition value at one end, you must also supply one for the other end.
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10csapiPurpose Cubic spline interpolation 

Syntax pp = csapi(x,y)
values = csapi(x,y,xx)

Description pp=csapi(x,y) returns the ppform of a cubic spline s with knot sequence x that 
takes the value y(:,j) at x(j) for j=1:length(x). The values y(:,j) can be 
scalars, vectors, matrices, even ND-arrays. Data points with the same data site 
are averaged and then sorted by their sites. With x the resulting sorted data 
sites, the spline s satisfies the not-a-knot end conditions, namely 

 (with  the third derivative of ). 

If x is a cell array, containing sequences x1, ..., xm, of lengths n1, ..., nm 
respectively, then y is expected to be an array, of size [n1,...,nm] (or of size 
[d,n1,...,nm] if the interpolant is to be d-valued). In that case, pp is the 
ppform of an m-cubic spline interpolant s to such data. In particular, now 

 equals  for . 

You can use the structure pp, in fnval, fnder, fnplt, etc, to evaluate, 
differentiate, plot, etc, this interpolating cubic spline.

values = csapi(x,y,xx)  is the same as fnval(csapi(x,y),xx), i.e., the 
values of the interpolating cubic spline at the sites specified by xx are returned.

This command is essentially the MATLAB® function spline, which, in turn, is 
a stripped-down version of the Fortran routine CUBSPL in PGS, except that 
csapi (and now also spline) accepts vector-valued data and can handle 
gridded data.

Examples See the demo “Spline Interpolation” for various examples.

Up to rounding errors, and assuming that x is a vector with at least four 
entries, the statement pp = csapi(x,y) should put the same spline into pp as 
does the statement 

pp = fn2fm(spapi(augknt(x([1 3:(end-2) end]),4),x,y),'pp');

except that the description of the spline obtained this second way will use no 
break at x(2) and x(n-1).

jumpx 2( )D
3s 0 jumpx end 1–( )D

3s= = D3s s

s x1 i1( ) … xm im( ), ,( ) y : i1 … im, , ,( ) i1 1:n1= … im 1:nm=, ,
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Here is a simple bivariate example, a bicubic spline interpolant to the Mexican 
Hat function being plotted:

x =.0001+[-4:.2:4]; y = -3:.2:3;
[yy,xx] = meshgrid(y,x); r = pi*sqrt(xx.^2+yy.^2); z = sin(r)./r;
bcs = csapi( {x,y}, z ); fnplt( bcs ), axis([-5 5 -5 5 -.5 1])

Note the reversal of x and y in the call to meshgrid, needed since MATLAB® 
likes to think of the entry z(i,j) as the value at (x(j),y(i)) while this toolbox 
follows the Approximation Theory standard of thinking of z(i,j) as the value 
at (x(i),y(j)). Similar caution has to be exerted when values of such a 
bivariate spline are to be plotted with the aid of the MATLAB mesh function, as 
is shown here (note the use of the transpose of the matrix of values obtained 
from fnval).

xf = linspace(x(1),x(end),41); yf = linspace(y(1),y(end),41);
mesh(xf, yf, fnval( bcs, {xf, yf}).')

Algorithm The relevant tridiagonal linear system is constructed and solved, using the 
MATLAB® sparse matrix capability.

The not-a-knot end condition is used, thus forcing the first and second 
polynomial piece of the interpolant to coincide, as well as the second-to-last and 
the last polynomial piece.

See Also csape, spapi, spline
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10csapsPurpose Cubic smoothing spline

Syntax pp = csaps(x,y)
csaps(x,y,p)
[...,p] = csaps(...)
csaps(x,y,p,[],w)
values = csaps(x,y,p,xx)
csaps(x,y,p,xx,w)
csaps({x1,...,xm},y,...)

Description pp = csaps(x,y) returns the ppform of a cubic smoothing spline  to the given 
data x,y, with the value of  at the data site x(j) approximating the data value 
y(:,j), for j=1:length(x). The values may be scalars, vectors, matrices, even 
ND-arrays. Data points with the same site are replaced by their (weighted) 
average, with its weight the sum of the corresponding weights.

This smoothing spline  minimizes

Here,  stands for the sum of the squares of all the entries of ,  is the 
number of entries of x, and the integral is over the smallest interval containing 
all the entries of x. The default value for the weight vector w in the error 
measure is ones(size(x)). The default value for the piecewise constant weight 
function  in the roughness measure is the constant function 1. Further,  
denotes the second derivative of the function . The default value for the 
smoothing parameter, p, is chosen in dependence on the given data sites x.

If the smoothing spline is to be evaluated outside its basic interval, it must first 
be properly extrapolated, by the command pp = fnxtr(pp), to ensure that its 
second derivative is zero outside the interval spanned by the data sites.

csaps(x,y,p) lets you supply the smoothing parameter. The smoothing 
parameter determines the relative weight you would like to place on the 
contradictory demands of having  be smooth vs having  be close to the data. 
For p = 0,  is the least-squares straight line fit to the data, while, at the other 
extreme, i.e., for p = 1,  is the variational, or ‘natural’ cubic spline interpolant. 
As p moves from 0 to 1, the smoothing spline changes from one extreme to the 

f
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other. The interesting range for p is often near , with  the 
average spacing of the data sites, and it is in this range that the default value 
for p is chosen. For uniformly spaced data, one would expect a close following 
of the data for  and some satisfactory smoothing for 

. You can input a p > 1, but this leads to a smoothing 
spline even rougher than the variational cubic spline interpolant.

If the input p is negative or empty, then the default value for p is used. 

[...,p] = csaps(...) also returns the value of  p actually used whether or 
not you specified p. This is important for experimentation which you might 
start with [pp,p]=csaps(x,y) in order to obtain a ‘reasonable’ first guess for p.

If you have difficulty choosing p but have some feeling for the size of the noise 
in y, consider using instead spaps(x,y,tol) which, in effect, chooses p in such 
a way that the roughness measure

is as small as possible subject to the condition that the error measure

does not exceed the specified tol . This usually means that the error measure 
equals the specified tol .

The weight function  in the roughness measure can, optionally, be specified 
as a (nonnegative) piecewise constant function, with breaks at the data sites 
x , by inputing for p a vector whose ith entry provides the value of  on the 
interval (x(i-1) .. x(i)) for i=2:length(x). The first entry of the input vector 
p continues to be used as the desired value of the smoothness parameter p. In 
this way, it is possible to insist that the resulting smoothing spline be smoother 
(by making the weight function larger) or closer to the data (by making the 
weight functions smaller) in some parts of the interval than in others.

csaps(x,y,p,[],w) lets you specify the weights w in the error measure, as a 
vector of nonnegative entries of the same size as x.

values = csaps(x,y,p,xx) is the same as fnval(csaps(x,y,p),xx).

1 1 h3+ 6⁄( )⁄ h

p 1 1 h3+ 60⁄( )⁄=
p 1 1 h3+ 0.6⁄( )⁄=

λ t( ) D2s t( )
2

td∫

w j( ) y : j,( ) s x j( )( )– 2
∑

λ

λ
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csaps(x,y,p,xx,w) is the same as fnval(csaps(x,y,p,[],w),xx).

[...] = csaps({x1,...,xm},y,...)  provides the ppform of an m-variate 
tensor-product smoothing spline to data on a rectangular grid. Here, the first 
argument is a cell-array, containing the vectors x1, ..., xm, of lengths n1, ..., nm, 
respectively. Correspondingly, y is an array of size [n1,...,nm] (or of size 
[d,n1,...,nm] in case the data are d-valued), with  the given 
(perhaps noisy) value at the grid site ). 

In this case, p if input must be a cell-array with m entries or else an m-vector, 
except that it may also be a scalar or empty, in which case it is taken to be the 
cell-array whose m entries all equal the p input. The optional second output 
argument will always be a cell-array with m entries.

Further, w if input must be a cell-array with m entries, with w{i} either empty, 
to indicate the default choice, or else a nonnegative vector of the same size as 
xi.

Examples Example 1.

   x = linspace(0,2*pi,21); y = sin(x)+(rand(1,21)-.5)*.1;
   pp = csaps(x,y, .4, [], [ones(1,10), repmat(5,1,10), 0] );

returns a smooth fit to the (noisy) data that is much closer to the data in the 
right half, because of the much larger error weight there, except for the last 
data point, for which the weight is zero.

   pp1 = csaps(x,y, [.4,ones(1,10),repmat(.2,1,10)], [], ...
                    [ones(1,10), repmat(5,1,10), 0]);

uses the same data, smoothing parameter, and error weight but chooses the 
roughness weight to be only .2 in the right half of the interval and gives, 
correspondingly, a rougher but better fit there, except for the last data point, 
which is ignored.

A plot showing both examples for comparison can now be obtained by

   fnplt(pp); hold on, fnplt(pp1,'r--'), plot(x,y,'ok'), hold off
   title(['cubic smoothing spline, with right half treated ',...
          'differently:'])
   xlabel(['blue: larger error weights; ', ...
           'red dashed: also smaller roughness weights'])

y : i1 … im, , ,( )
x1 i1( ) … xm im( ), ,
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The resulting plot is shown below.

Example 2. As a bivariate example, we add some uniform noise, from the 
interval [-1/2 .. 1/2], to values of the MATLAB® peaks function on a 51-by-61 
uniform grid, obtain smoothed values for these data from csaps, along with the 
smoothing parameters chosen by csaps, and then plot these smoothed values.

x = {linspace(-2,3,51),linspace(-3,3,61)};
[xx,yy] = ndgrid(x{1},x{2}); y = peaks(xx,yy);
rand('state',0), noisy = y+(rand(size(y))-.5);
[smooth,p] = csaps(x,noisy,[],x);
surf(x{1},x{2},smooth.'), axis off

Note the need to transpose the array smooth. For a somewhat smoother 
approximation, use a slightly smaller value of p than the one, .9998889, used 
above by csaps. The final plot is obtained by the following:

smoother = csaps(x,noisy,.996,x);
figure, surf(x{1},x{2},smoother.'), axis off

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5
cubic smoothing spline, with right half treated differently:

blue: larger error weights; red dashed: also smaller roughness weights



csaps

10-28

Algorithm csaps is an implementation of the Fortran routine SMOOTH from PGS.

The default value for p is determined as follows. The calculation of the 
smoothing spline requires the solution of a linear system whose coefficient 
matrix has the form p*A + (1-p)*B, with the matrices A and B depending on 
the data sites x. The default value of p makes p*trace(A) equal 
(1-p)*trace(B).

See Also csape, spap2, spaps, tpaps
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10cscvnPurpose “Natural” or periodic interpolating cubic spline curve

Syntax curve = cscvn(points)

Description curve = cscvn(points)  returns a parametric variational, or natural, cubic 
spline curve (in ppform) passing through the given sequence 

. The parameter value  for the  point is chosen 
by Eugene Lee’s [1] centripetal scheme, i.e., as accumulated square root of 
chord length:

If the first and last point coincide (and there are no other repeated points), then 
a periodic cubic spline curve is constructed. However, double points result in 
corners.

Examples The following provides the plot of a questionable curve through some points 
(marked as circles): 

points=[0 1 1 0 -1 -1 0 0; 0 0 1 2 1 0 -1 -2]; 
fnplt(cscvn(points)); hold on, 
plot(points(1,:),points(2,:),'o'), hold off

Here is a closed curve, good for 14 February, with one double point:

c=fnplt(cscvn([0 .82 .92 0 0 -.92 -.82 0; .66 .9 0 ...
-.83 -.83 0 .9 .66])); fill(c(1,:),c(2,:),'r'), axis equal

Algorithm The break sequence t is determined as

t = cumsum([0;((diff(points.').^2)*ones(d,1)).^(1/4)]).';

and csape (with either periodic or variational end conditions) is used to 
construct the smooth pieces between double points (if any).

See Also csape, fnplt, getcurve, getcurv2

References [1] E.T.Y. Lee, Choosing nodes in parametric curve interpolation, 
Computer-Aided Design 21 (1989), 363–370.

points : j,( ) j 1:end=, t j( ) jth

points : i 1+,( ) points– : i,( ) 2

i j<
∑
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10fn2fmPurpose Convert to specified form

Syntax g = fn2fm(f,form)
sp = fn2fm(pp,'B-',sconds)
fn2fm(f)

Description g = fn2fm(f,form) describes the same function as is described by f, but in the 
form specified by the string form. Choices for form are 'B-', 'pp', 'BB', 'rB', 
'rp', for the B-form, the ppform, the BBform, and the two rational spline 
forms, respectively.

The B-form describes a function as a weighted sum of the B-splines of a given 
order k for a given knot sequence, and the BBform (or, Bernstein-Bézier form) 
is the special case when each knot in that sequence appears with maximal 
multiplicity, k. The ppform describes a function in terms of its local polynomial 
coefficients. The B-form is good for constructing and/or shaping a function, 
while the ppform is cheaper to evaluate.

Conversion from a polynomial form to the corresponding rational form is 
possible only if the function in the polynomial form is vector-valued, in which 
case its last component is designated as the denominator. Converting from a 
rational form to the corresponding polynomial form simply reverses this 
process by reinterpreting the denominator of the function in the rational form 
as an additional component of the piecewise polynomial function.

Conversion to or from the stform is not possible at present.

If form is 'B-' (and f is in ppform), then the actual smoothness of the function 
in f across each of its interior breaks has to be guessed. This is done by looking, 
for each interior break, for the first derivative whose jump across that break is 
not small compared to the size of that derivative nearby. The default tolerance 
used in this is 1.e-12. 

sp = fn2fm(f,'B-',sconds) permits you to supply, as the input argument 
sconds, a tolerance (strictly between 0 and 1) to be used in the conversion from 
ppform to B-form.

Alternatively, you can input sconds as a vector with integer entries, with at 
least as many entries as the ppform in f has interior breaks. In that case, 
sconds(i) specifies the number of smoothness conditions to be used across the 
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ith interior break. If the function in f is a tensor product, then sconds, if given, 
must be a cell array.

fn2fm(f)  converts a possibly old version of a form into its present version.

Examples sp = fn2fm(spline(x,y),'B-') gives the interpolating cubic spline provided 
by the MATLAB® command spline, but in B-form rather than in ppform.

p0 = ppmak([0 1],[3 0 0]);
p1 = fn2fm(fn2fm(fnrfn(p0,[.4 .6]),'B-'),'pp');

gives p1 identical to p0 (up to round-off in the coefficients) since the spline has 
no discontinuity in any derivative across the additional breaks introduced by 
fnrfn, hence conversion to B-form ignores these additional breaks, and 
conversion to ppform does not retain any knot multiplicities (like the knot 
multiplicities introduced, by conversion to B-form, at the endpoints of the 
spline's basic interval).

Algorithm For a multivariate (tensor-product) function, univariate algorithms are applied 
in each variable.

For the conversion from B-form (or BBform) to ppform, the utility command 
sprpp is used to convert the B-form of all polynomial pieces to their local power 
form, using repeated knot insertion at the left endpoint.

The conversion from B-form to BBform is accomplished by inserting each knot 
enough times to increase its multiplicity to the order of the spline.

The conversion from ppform to B-form makes use of the dual functionals 
discussed in Chapter 3, “Splines: An Overview.” Without further information, 
such a conversion has to ascertain the actual smoothness across each interior 
break of the function in f.

See Also ppmak, spmak, rsmak, stmak

Cautionary 
Note

When going from B-form to ppform, any jump discontinuity at the first and last 
knot, t(1) or t(end), will be lost since the ppform considers f to be defined 
outside its basic interval by extension of the first, respectively, the last 
polynomial piece. For example, while sp=spmak([0 1],1) gives the 
characteristic function of the interval [0..1], pp=fn2fm(spmak([0 1],1),'pp') 
is the constant polynomial, .x 1
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10fnbrkPurpose Name and part(s) of form

Syntax [out1,...,outn] = fnbrk(f,part1,...,partm)
fnbrk(f,interval)
fnbrk(pp,j)
fnbrk(f)

Description [out1,...,outn] = fnbrk(f,part1,...,partm)  returns the part(s) of the 
form in f specified by part1,...,partn (assuming that n<=m). These are the 
parts used when the form was put together, in spmak or ppmak or rpmak or 
rsmak or stmak, but also other parts derived from these.

You only need to specify the beginning character(s) of the revelant string.

Regardless of what particular form f is in, parti can be one of the following.

Depending on the form in f, additional parts may be asked for.

If f is in B-form (or BBform or rBform), then additional choices for parti are.

'form' The particular form used

'variables' The dimension of the function’s domain

'dimension' The dimension of the function’s target

'coefficients' The coefficients in that particular form 

'interval' The basic interval of that form

'knots' The knot sequence

'coefficients' The B-spline coefficients

'number' The number of coefficients 

'order' The polynomial order of the spline
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If f is in ppform (or rpform), then additional choices for parti are

If the function in f is multivariate, then the corresponding multivariate parts 
are returned. This means, e.g., that knots, breaks, and the basic interval, are 
cell arrays, the coefficient array is, in general, higher than two-dimensional, 
and order, number and pieces are vectors.

If f is in stform, then additional choices for parti are

fnbrk(f,interval) with interval a 1-by-2 matrix [a b] with a<b does not 
return a particular part. Rather, it returns a description of the univariate 
function described by f and in the same form but with the basic interval 
changed, to the interval given. If, instead, interval is [ ], f is returned 
unchanged. This is of particular help when the function in f is -variate, in 
which case interval must be a cell array with  entries, with the th entry 
specifying the desired interval in the th dimension. If that th entry is [ ], 
the basic interval in the th dimension is unchanged.

fnbrk(pp,j) , with pp the ppform of a univariate function and j a positive 
integer, does not return a particular part, but returns the ppform of the jth 
polynomial piece of the function in pp. If pp is the ppform of an -variate 

'breaks' The break sequence

'coefficients' The local polynomial coefficients

'pieces' The number of polynomial pieces 

'order' The polynomial order of the spline

'guide' The local polynomial coefficients, but in the form 
needed for PPVALU in PGS

'centers' The centers

'coefficients' The coefficients

'number' Number of coefficients or terms

'type' The particular type

m
m i

i i
i

m
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function, then j must be a cell array of length . In that case, each entry of j 
must be a positive integer or else an interval, to single out a particular 
polynomial piece or else to specify the basic interval in that dimension.

fnbrk(f) returns nothing, but a description of the various parts of the form is 
printed at the command line instead.

Examples If p1 and p2 contain the B-form of two splines of the same order, with the same 
knot sequence, and the same target dimension, then

p1plusp2 = spmak(fnbrk(p1,'k'),fnbrk(p1,'c')+fnbrk(p2,'c'));

provides the (pointwise) sum of those two functions.

If pp contains the ppform of a bivariate spline with at least four polynomial 
pieces in the first variable, then ppp=fnbrk(pp,{4,[-1 1]}) gives the spline 
that agrees with the spline in pp on the rectangle [b4 .. b5] x [-1 .. 1] , where 
b4, b5 are the fourth and fifth entry in the break sequence for the first variable.

See Also ppmak,rpmak,rsmak, spmak, stmak

m
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10fnchgPurpose Change part(s) of form

Syntax f = fnchg(f,part,value)

Description f = fnchg(f,part,value) returns the given function description f but with 
the specified part changed to the specified value.

The string part can be (the beginning character(s) of):

The specified value for part is not checked for consistency with the rest of the 
description in f in case the string part terminates with the letter z.

Examples fndir(f,directions) returns a vector-valued function even when the function 
described by f is ND-valued.You can correct this by using fnchg as follows:

fdir = fnchg( fndir(f,directions),...
 'dim',[fnbrk(f,'dim'),size(directions,2)] );

See Also fnbrk

'dimension' The dimension of the function’s target

'interval' The basic interval of that form
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10fncmbPurpose Arithmetic with function(s)

Syntax fn = fncmb(function,operation)
fn = fncmb(function,function)
fn = fncmb(function,matrix,function)
fn = fncmb(function,matrix,function,matrix)
fn = fncmb(function,op,function)

Description The intent is to make it easy to carry out the standard linear operations of 
scaling and adding within a spline space without having to deal explicitly with 
the relevant parts of the function(s) involved.

fn = fncmb(function,operation)  returns (a description of) the function 
obtained by applying to the values of the function in function the operation 
specified by operation. The nature of the operation depends on whether 
operation is a scalar, a vector, a matrix, or a string, as follows.

The remaining options only work for univariate functions. See Limitations for 
more information.

f = fncmb(function,function) returns (a description of) the pointwise sum 
of the two functions. The two functions must be of the same form. This 
particular case of just two input arguments is not included in the above table 
since it only works for univariate functions.

fncmb(function,matrix,function) is the same as 
fncmb(fncmb(function,matrix),function).

Scalar Multiply the function by that scalar.

Vector Add that vector to the function’s values; this requires the 
function to be vector-valued.

Matrix Apply that matrix to the function’s coefficients.

String Apply the function or M-file, specified by that string, to the 
function’s coefficients.
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fncmb(function,matrix,function,matrix) is the same as 
fncmb((fncmb(function,matrix),fncmb(function,matrix)).

f = fncmb(function,op,function) returns the ppform of the spline obtained 
by the pointwise combining of the two functions, as specified by the string op. 
op can be one of the strings '+', '-', '*'. If the second function is to be a 
constant, it is sufficient simply to supply here that constant.

 Examples fncmb(fn,3.5) multiplies (the coefficients of) the function in fn by 3.5.

fncmb(f,3,g,-4) returns the linear combination, with weights 3 and -4, of the 
function in f and the function in g. 

fncmb(f,3,g) adds 3 times the function in f to the function in g. 

If the function  in f happens to be scalar-valued, then f3=fncmb(f,[1;2;3]) 
contains the description of the function whose value at  is the 3-vector 

. Note that, by the convention throughout this toolbox, the 
subsequent statement  returns a 1-column-matrix. 

If f describes a surface in , i.e., the function in f is 3-vector-valued bivariate, 
then f2 = fncmb(f,[1 0 0;0 0 1]) describes the projection of that surface to 
the -plane. 

The following commands produce the picture of a ... spirochete?

c = rsmak('circle');
fnplt(fncmb(c,diag([1.5,1]))); axis equal, hold on
sc = fncmb(c,.4);
fnplt(fncmb(sc,-[.2;-.5]))
fnplt(fncmb(sc,-[.2,-.5]))
hold off, axis off

If t is a knot sequence of length n+k and a is a matrix with n columns, then 
fncmb(spmak(t,eye(n)),a) is the same as spmak(t,a).

fncmb(spmak([0:4],1),'+',ppmak([-1 5],[1 -1])) is the 
piecewise-polynomial with breaks -1:5 that, on the interval [0 .. 4], agrees with 
the function  (but has no active break at 0 or 1, 
hence differs from this function outside the interval [0 .. 4]).

fncmb(spmak([0:4],1),'-',0) has the same effect as 
fn2fm(spmak([0:4],1),'pp').

f
x

f x( ) 2f x( ) 3f x( ), ,( )
fnval f3 x,( )

R3

x z,( )

x B x|0 1 2 3 4, , , ,( ) x+
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Assuming that sp describes the B-form of a spline of order <k, the output of

 fn2fm(fncmb(sp,'+',ppmak(fnbrk(sp,'interv'),zeros(1,k))),'B-')

describes the B-form of the same spline, but with its order raised to k.

Algorithm The coefficients are extracted (via fnbrk) and operated on by the specified 
matrix or operation (and, possibly, added), then recombined with the rest of the 
function description (via ppmak, spmak,rpmak,rsmak,stmak). To be sure, when 
the function is rational, the matrix is only applied to the coefficients of the 
numerator. Again, if we are to translate the function values by a given vector 
and the function is in ppform, then only the coefficients corresponding to 
constant terms are so translated. 

If there are two functions input, then they must be of the same type (see 
Limitations, below) except for the following.

fncmb(f1,op,f2) returns the ppform of the function 

with op one of '+', '-', '*', and f1, f2 of arbitrary polynomial form. If, in 
addition, f2 is a scalar or vector, it is taken to be the function that is constantly 
equal to that scalar or vector.

Limitations fncmb only works for univariate functions, except for the case 
fncmb(function,operation), i.e., when there is just one function in the input.

Further, if two functions are involved, then they must be of the same type. This 
means that they must either both be in B-form or both be in ppform, and, 
moreover, have the same knots or breaks, the same order, and the same target. 
The only exception to this is the command of the form 
fncmb(function,op,function).

x f1 x( ) op f2 x( )
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10fnderPurpose Differentiate function

Syntax fprime = fnder(f,dorder)
fnder(f)

Description fprime = fnder(f,dorder)  is the description of the dorderth derivative of 
the function whose description is contained in f. The default value of dorder is 
1. For negative dorder, the particular |dorder|th indefinite integral is 
returned that vanishes |dorder|-fold at the left endpoint of the basic interval.

The output is of the same form as the input, i.e., they are both ppforms or both 
B-forms or both stforms. fnder does not work for rational splines; for them, use 
fntlr instead. fnder works for stforms only in a limited way: if the type is 
tp00, then dorder can be [1,0] or [0,1].

fnder(f)  is the same as fnder(f,1). 

If the function in f is multivariate, say -variate, then dorder must be given, 
and must be of length .

Examples If f is in ppform, or in B-form with its last knot of sufficiently high multiplicity, 
then, up to rounding errors, f and fnder(fnint(f)) are the same. 

If f is in ppform and fa is the value of the function in f at the left end of its 
basic interval, then, up to rounding errors, f and fnint(fnder(f),fa) are the 
same, unless the function described by f has jump discontinuities.

If f contains the B-form of , and  is its leftmost knot, then, up to rounding 
errors, fnint(fnder(f)) contains the B-form of  . However, its 
leftmost knot will have lost one multiplicity (if it had multiplicity > 1 to begin 
with). Also, its rightmost knot will have full multiplicity even if the rightmost 
knot for the B-form of  in f doesn’t.

Here is an illustration of this last fact. The spline in sp = spmak([0 0 1], 1) 
is, on its basic interval [0..1], the straight line that is 1 at 0 and 0 at 1. Now 
integrate its derivative: spdi = fnint(fnder(sp)). As you can check, the 
spline in spdi has the same basic interval, but, on that interval, it agrees with 
the straight line that is 0 at 0 and -1 at 1.

See the demos “Intro to B-form” and “Intro to ppform” for examples.

m
m

f t1
f-f t1( )

f
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Algorithm For differentiation of either polynomial form, the derivatives are found in the 
piecewise-polynomial sense. This means that, in effect, each polynomial piece 
is differentiated separately, and jump discontinuities between polynomial 
pieces are ignored during differentiation.

For the B-form, the formulas [PGS; (X.10)] for differentiation are used.

For the stform, differentiation relies on knowing a formula for the relevant 
derivative of the basis function of the particular type.

 See Also fndir, fnint, fnplt, fnval
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10fndirPurpose Directional derivative of function

Syntax df = fndir(f,y)

Description df = fndir(f,y) is the ppform of the directional derivative, of the function  
in f, in the direction of the (column-)vector y. This means that df describes the 
function .

If y is a matrix, with n columns, and  is d-valued, then the function in df is 
prod(d)*n-valued. Its value at , reshaped to be of size [d,n], has in its th 
‘column’ the directional derivative of  at  in the direction of the th column 
of y. If you prefer df to reflect explicitly the actual size of , use instead

df = fnchg( fndir(f,y), 'dim',[fnbrk(f,'dim'),size(y,2)] );

Since fndir relies on the ppform of the function in f, it does not work for 
rational functions nor for functions in stform.

Examples For example, if f describes an m-variate d-vector-valued function and x is some 
point in its domain, then, e.g., with this particular ppform f that describes a 
scalar-valued bilinear polynomial,

f = ppmak({0:1,0:1},[1 0;0 1]); x = [0;0];
[d,m] = fnbrk(f,'dim','var');
jacobian = reshape(fnval(fndir(f,eye(m)),x),d,m)

is the Jacobian of that function at that point (which, for this particular 
scalar-valued function, is its gradient, and it is zero at the origin).

As a related example, the next statements plot the gradients of (a good 
approximation to) the Franke function at a regular mesh:

xx = linspace(-.1,1.1,13); yy = linspace(0,1,11);
[x,y] = ndgrid(xx,yy); z = franke(x,y);
pp2dir = fndir(csapi({xx,yy},z),eye(2));
grads = reshape(fnval(pp2dir,[x(:) y(:)].'),...
 [2,length(xx),length(yy)]);
quiver(x,y,squeeze(grads(1,:,:)),squeeze(grads(2,:,:)))

Here is the resulting plot.

f

Dyf x( ) := lim f x ty+( )-f x( )( )t 0→ /t

f
x j

f x j
f
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Algorithm The function in f is converted to ppform, and the directional derivative of its 
polynomial pieces is computed formally and in one vector operation, and put 
together again to form the ppform of the directional derivative of the function 
in f.

See Also fnchg, fnder, fnint, franke
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10fnintPurpose Integrate function

Syntax intgrf = fnint(f,value)

fnint(f)

Description intgrf = fnint(f,value)  is the description of an indefinite integral of the 
univariate function whose description is contained in f. The integral is 
normalized to have the specified value at the left endpoint of the function’s 
basic interval, with the default value being zero.

The output is of the same type as the input, i.e., they are both ppforms or both 
B-forms. fnint does not work for rational splines nor for functions in stform.

fnint(f)  is the same as fnint(f,0).

Indefinite integration of a multivariate function, in coordinate directions only, 
is available via fnder(f,dorder) with dorder having nonpositive entries.

Examples The statement diff(fnval(fnint(f),[a b])) provides the definite integral 
over the interval [a .. b] of the function described by f.

If f is in ppform, or in B-form with its last knot of sufficiently high multiplicity, 
then, up to rounding errors, f and fnder(fnint(f)) are the same. 

If f is in ppform and fa is the value of the function in f at the left end of its 
basic interval, then, up to rounding errors, f and fnint(fnder(f),fa) are the 
same, unless the function described by f has jump discontinuities.

If f contains the B-form of , and  is its leftmost knot, then, up to rounding 
errors, fnint(fnder(f)) contains the B-form of  . However, its leftmost 
knot will have lost one multiplicity (if it had multiplicity > 1 to begin with). 
Also, its rightmost knot will have full multiplicity even if the rightmost knot 
for the B-form of  in f doesn’t.

Here is an illustration of this last fact. The spline in sp = spmak([0 0 1], 1) 
is, on its basic interval [0..1], the straight line that is 1 at 0 and 0 at 1. Now 
integrate its derivative: spdi = fnint(fnder(sp)). As you can check, the 
spline in spdi has the same basic interval, but, on that interval, it agrees with 
the straight line that is 0 at 0 and -1 at 1.

See the demos ”Intro to B-form” and “Intro to ppform” for examples.

Algorithm For the B-form, the formula [PGS; (X.22)] for integration is used.

f t1
f-f t1( )

f
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See Also fnder, fnplt, fnval
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10fnjmpPurpose Jumps, i.e., f(x+)-f(x-)

Syntax jumps = fnjmp(f,x)

Description jumps = fnjmp(f,x)  is like fnval(f,x), -- except that it returns the jump 
 across x (rather than the value at x) of the function  described 

by f and that it only works for univariate functions.

This is a function for spline specialists.

Examples fnjmp(ppmak(1:4,1:3),1:4) returns the vector [0,1,1,0] since the pp 
function here is 1 on [1 .. 2], 2 on [2 .. 3], and 3 on [3 .. 4], hence has zero jump 
at 1 and 4 and a jump of 1 across both 2 and 3. 

If x is cos([4:-1:0]*pi/4), then fnjmp(fnder(spmak(x,1),3),x) returns the 
vector [12 -24 24 -24 12] (up to round-off). This is consistent with the fact 
that the spline in question is a so called perfect cubic B-spline, i.e., has an 
absolutely constant third derivative (on its basic interval). The modified 
command 

fnjmp(fnder(fn2fm(spmak(x,1),'pp'),3),x) 

returns instead the vector [0 -24 24 -24 0], consistent with the fact that, in 
contrast to the B-form, a spline in ppform does not have a discontinuity in any 
of its derivatives at the endpoints of its basic interval. Note that 
fnjmp(fnder(spmak(x,1),3),-x) returns the vector [12,0,0,0,12] since -x, 
though theoretically equal to x, differs from x by roundoff, hence the third 
derivative of the B-spline provided by spmak(x,1) does not have a jump across 
-x(2),-x(3), and -x(4).

f x+( ) f x–( )– f
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10fnminPurpose Minimum of function in given interval

Syntax fnmin(f)
fnmin(f,interv)
[minval,minsite] = fnmin(f,...)

Description fnmin(f)  returns the minimum value of the scalar-valued univariate spline in 
f on its basic interval.

fnmin(f,interv) returns the minimum value on the interval [a..b] specified by 
interv.

[minval,minsite] = fnmin(f,...) also returns a location, minsite, at which 
the function in f takes that minimum value, minval.

Examples Example 1. We construct and plot a spline  with many local extrema, then 
compute its maximum as the negative of the minimum of . We indicate this 
maximum value by adding a horizontal line to the plot at the height of the 
computed maximum. 

rand('seed',21);
f = spmak(1:21,rand(1,15)-.5);
fnplt(f)
maxval = -fnmin(fncmb(f,-1));
hold on, plot(fnbrk(f,'interv'),maxval([1 1])), hold off

f
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Example 2.  Since spmak(1:5,-1) provides the negative of the cubic B-spline 
with knot sequence 1:5, we expect the command

[y,x] = fnmin(spmak(1:5,-1))

to return -2/3 for y and 3 for x.

 Algorithm fnmin first changes the basic interval of the function to the given interval, if 
any. On the interval, fnmin then finds all local extrema of the function as left 
and right limits at a jump and as zeros of the function’s first derivative. It then 
evaluates the function at these extrema and at the endpoints of the interval, 
and determines the minimum over all these values.

See Also fnval, fnzeros
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10fnpltPurpose Plot function

Syntax fnplt(f)
fnplt(f,arg1,arg2,arg3,arg4) 
points = fnplt(f)

Description fnplt(f) plots the function, described by f, on its basic interval.

If  is univariate, the following is plotted: 

• If  is scalar-valued, the graph of  is plotted.

• If  is 2-vector-valued, the planar curve is plotted. 

• If  is -vector-valued with , the space curve given by the first three 
components of  is plotted.

If  is bivariate, the following is plotted: 

• If  is scalar-valued, the graph of  is plotted (via surf).

• If  is 2-vector-valued, the image in the plane of a regular grid in its domain 
is plotted.

• If  is -vector-valued with , then the parametric surface given by the 
first three components of its values is plotted (via surf).

If  is a function of more than two variables, then the bivariate function, 
obtained by choosing the midpoint of the basic interval in each of the variables 
other than the first two, is plotted.

fnplt(f,arg1,arg2,arg3,arg4) permits you to modify the plotting by the 
specification of additional input arguments. You can place these arguments in 
whatever order you like, chosen from the following list:

• A string that specifies a plotting symbol, such as '-.' or '*'; the default 
is '-'.

• A scalar to specify the linewidth; the default value is 1.

• A string that starts with the letter 'j' to indicate that any jump in the 
univariate function being plotted should actually appear as a jump. The 
default is to fill in any jump by a (near-)vertical line.

• A vector of the form [a,b], to indicate the interval over which to plot the 
univariate function in f. If the function in f is -variate, then this optional 

f

f f

f

f d d 2>
f

f

f f

f

f d d 2>

f

m



fnplt

10-49

argument must be a cell array whose ith entry specifies the interval over 
which the ith argument is to vary. In effect, for this arg, the command 
fnplt(f,arg,...) has the same effect as the command 
fnplt(fnbrk(f,arg),...). The default is the basic interval of f.

• An empty matrix or string, to indicate use of default(s). You will find this 
option handy when your particular choice depends on some other variables.

points = fnplt(f,...) plots nothing, but the two-dimensional points or 
three-dimensional points it would have plotted are returned instead. 

Algorithm The univariate function  described by f is evaluated at 101 equally spaced 
sites x filling out the plotting interval. If  is real-valued, the points  
are plotted. If  is vector-valued, then the first two or three components of 

 are plotted.

The bivariate function  described by f is evaluated on a 51-by-51 uniform grid 
if  is scalar-valued or -vector-valued with  and the result plotted by 
surf. In the contrary case,  is evaluated along the meshlines of a 11-by-11 
grid, and the resulting planar curves are plotted.

See Also fnder, fnint, fnval

Cautionary 
Note

The basic interval for  in B-form is the interval containing all the knots. This 
means that, e.g.,  is sure to vanish at the endpoints of the basic interval unless 
the first and the last knot are both of full multiplicity , with  the order of 
the spline . Failure to have such full multiplicity is particularly annoying 
when  is a spline curve, since the plot of that curve as produced by fnplt is 
then bound to start and finish at the origin, regardless of what the curve might 
otherwise do.

Further, since B-splines are zero outside their support, any function in B-form 
is zero outside the basic interval of its form. This is very much in contrast to a 
function in ppform whose values outside the basic interval of the form are given 
by the extension of its leftmost, respectively rightmost, polynomial piece.

f
f x f x( ),( )
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10fnrfnPurpose Refine partition of form

Syntax g = fnrfn(f,addpts)

Description g = fnrfn(f,addpts) describes the same function as does f, but uses more 
terms to do it. This is of use when the sum of two or more functions of different 
forms is wanted or when the number of degrees of freedom in the form is to be 
increased to make fine local changes possible. The precise action depends on 
the form in f.

If the form in f is a B-form or BBform, then the entries of addpts are inserted 
into the existing knot sequence, subject to the following restriction: The 
multiplicity of no knot exceed the order of the spline. The equivalent B-form 
with this refined knot sequence for the function given by f is returned.

If the form in f is a ppform, then the entries of addpts are inserted into the 
existing break sequence, subject to the following restriction: The break 
sequence be strictly increasing. The equivalent ppform with this refined break 
sequence for the function in f is returned.

fnrfn does not work for functions in stform.

If the function in f is m-variate, then addpts must be a cell array, 
{addpts1,..., addptsm}, and the refinement is carried out in each of the 
variables. If the ith entry in this cell array is empty, then the knot or break 
sequence in the ith variable is unchanged.

Examples See fncmb for the use of fnrfn to refine the knot or break sequences of two 
splines to a common refinement before forming their sum.

Algorithm The standard knot insertion algorithm is used for the calculation of the B-form 
coefficients for the refined knot sequence, while Horner’s method is used for the 
calculation of the local polynomial coefficients at the additional breaks in the 
refined break sequence.

See Also fncmb, ppmak, spmak
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10fntlrPurpose Taylor coefficients or polynomial

Syntax taylor = fntlr(f,dorder,x)
p = fntlr(f,dorder,x,interv)

Description taylor = fntlr(f,dorder,x)  returns the unnormalized Taylor coefficients, 
up to the given order dorder and at the given x, of the function described in f . 

For a univariate function and a scalar x, this is the vector

If, more generally, the function in f is d-valued with d>1 or even prod(d)>1 
and/or is m-variate for some m>1, then dorder is expected to be an m-vector of 
positive integers, x is expected to be a matrix with m rows, and, in that case, the 
output is of size [prod(d)*prod(dorder),size(x,2)], with its j-th column 
containing

for i1=1:dorder(1), ..., im=1:dorder(m). Here,  is the partial derivative 
of  with respect to its th argument.

p = fntlr(f,dorder,x,interv)  returns instead a ppform of the Taylor 
polynomial at x of order dorder for the function described by f. The basic 
interval for this ppform is as specified by interv. In this case and assuming 
that the function described by f is m-variate, x is expected to be of size [m,1], 
and interv is either of size [m,2] or else a cell array of length m containing m 
vectors of size [1,2].

 Examples If f contains a univariate function and x is a scalar or a 1-row matrix, then 
fntlr(f,3,x) produces the same output as the statements

df = fnder(f); [fnval(f,x); fnval(df,x); fnval(fnder(df),x)];

As a more complicated example, look at the Taylor vectors of order 3 at 21 
equally spaced points for the rational spline whose graph is the unit circle:

ci = rsmak('circle'); in = fnbrk(ci,'interv');
t = linspace(in(1),in(2),21); t(end)=[];
v = fntlr(ci,3,t);

T f dorder x, ,( ) := [f x( ) Df x( ) … D
dorder-1

f x( );;; ]

T f dorder x(:,j), ,( ) i1 … im, ,( ) D1
i1-1…Dm

im-1f x(:,j)( )=

Dif
f i
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We plot ci along with the points v(1:2,:), to verify that these are, indeed, 
points on the unit circle.

fnplt(ci), hold on, plot(v(1,:),v(2,:),'o')

Next, to verify that v(3:4,j) is a vector tangent to the circle at the point 
v(1:2,j), we use the MATLAB® quiver command to add the corresponding 
arrows to our plot:

quiver(v(1,:),v(2,:),v(3,:),v(4,:))

Finally, what about v(5:6,:)? These are second derivatives, and we add the 
corresponding arrows by the following quiver command, thus finishing 
Figure 10-1.

quiver(v(1,:),v(2,:),v(5,:),v(6,:)), axis equal, hold off

 

Figure 10-1:  First and Second Derivative of a Rational Spline Giving a Circle

Now, our curve being a circle, you might have expected the 2nd derivative 
arrows to point straight to the center of that circle, and that would have been 
indeed the case if the function in ci had been using arclength as its 
independent variable. Since the parameter used is not arclength, we use the 
formula, given in “Example: A Spline Curve” on page 5-10, to compute the 
curvature of the curve given by ci at these selected points. For ease of 
comparison, we switch over to the variables used there and then simply use the 
commands from there.
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dspt = v(3:4,:); ddspt = v(5:6,:);
kappa = abs(dspt(1,:).*ddspt(2,:)-dspt(2,:).*ddspt(1,:))./...

(sum(dspt.^2)).^(3/2);
max(abs(kappa-1))
ans = 2.2204e-016

The numerical answer is reassuring: at all the points tested, the curvature is 1 
to within roundoff.

Figure 10-2:  The Function 1/(1+x^2+y^2) and Its Taylor Polynomial of 
Order [3,3] at the Origin

As a final example, we start with a bivariate version of the Runge function, 
obtaining, for variety, a ppform for its denominator, , by bicubic 
spline interpolation:

w = csapi({-1:1,-1:1},[3 2 3;2 1 2;3 2 3]);

Next, we make up the coefficient array for the numerator, 1, using exactly the 
same size, and put the two together into a rational spline:

wcoefs = fnbrk(w,'coef');
scoefs = zeros(size(wcoefs)); scoefs(end)=1;
runge2 = rpmak(fnbrk(w,'breaks'),[scoefs;wcoefs]);

Then we enlarge the basic interval for this rational spline, plot it and plot, on 
top of it, its Taylor polynomial at (0,0) of order [3,3].

1 x2 y2+ +
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fnplt(fnbrk(runge2,{[-2 2],[-2 2]}));  shading interp, hold on
fnplt(fntlr(runge2,[3 3],[0;0],[-.7 .7; -.7 .7])) 
axis off, hold off

Since we shaded the function but not the Taylor polynomial, we can easily 
distinguish the two in the previous figure. We can also see that, in contrast to 
the function, the Taylor polynomial fails to be rotationally symmetric. This is 
due to the fact that it is a polynomial of order [3,3] rather than a polynomial of 
total order 3.

To obtain the Taylor polynomial of order 3, we get the Taylor polynomial of 
order [3,3], but with (0,0) the left point of its basic interval, set all its 
coefficients of total order bigger than 3 equal to zero, and then reconstruct the 
polynomial, and plot it, choosing a different view in order to show off the Taylor 
polynomial better. Here are the commands and the resulting figure.

taylor = fntlr(runge2,[3 3],[0;0],[0 1;0 1]);
tcoef = fnbrk(taylor,'coe'); tcoef([1 2 4]) = 0;
taylor2 = fnbrk(ppmak(fnbrk(taylor,'br'),tcoef),{[-1 1],[-1 1]});
fnplt(fnbrk(runge2,{[-2 2],[-2 2]}));  shading interp, hold on
fnplt(taylor2), view(-28,-26), axis off, hold off

Figure 10-3:  The Function 1/(1+x^2+y^2) and Its Taylor Polynomial of 
Order 3 at the Origin

See Also fnder, fndir
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10fnvalPurpose Evaluate function

Syntax v = fnval(f,x)
fnval(x,f)
fnval(...,'l')

Description v = fnval(f,x) and v = fnval(x,v) both provide the value  at the points 
in x of the function  whose description is contained in f.

Roughly speaking, the output v is obtained by replacing each entry of x by the 
value of  at that entry. This is literally true in case the function in f is 
scalar-valued and univariate, and is the intent in all other cases, except that, 
for a d-valued m-variate function, this means replacing m-vectors by d-vectors. 
The full details are as follows.

For a univariate  :

•  If  is scalar-valued, then v is of the same size as x. 

• If  is [d1,...,dr]-valued, and x has size [n1,...,ns], then v has size 
[d1,...,dr, n1,...,ns], with v(:,...,:, j1,...,js) the value of  at 
x(j1,...,js), – except that 

(1) n1 is ignored if it is 1 and s is 2, i.e., if x is a row vector; and

(2) MATLAB® ignores any trailing singleton dimensions of x.

For an m-variate  with m>1, with   [d1,...,dr]-valued, x may be either an 
array, or else a cell array {x1,...,xm}.

• If x is an array, of size [n1,...,ns] say, then n1 must equal m, and v has size 
[d1,...,dr, n2,...,ns], with v(:,...,:, j2,...,js) the value of  at 
x(:,j2,...,js), – except that

(1) d1, ..., dr is ignored in case  is scalar-valued, i.e., both r and n1 are 1;

(2) MATLAB® ignores any trailing singleton dimensions of x.

• If x is a cell array, then it must be of the form {x1,...,xm}, with xj a vector, 
of length nj, and, in that case, v has size [d1,...,dr, n1,...,nm], with 
v(:,...,:, j1,...,jm) the value of  at (x1(j1), ..., xm(jm)), – except that 
d1, ..., dr is ignored in case  is scalar-valued, i.e., both r and n1 are 1.

f x( )
f

f

f

f

f
f

f f

f

f

f
f
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If  has a jump discontinuity at x, then the value , i.e., the limit from the 
right, is returned, except when x equals the right end of the basic interval of 
the form; for such x, the value , i.e., the limit from the left, is returned.

fnval(x,f)  is the same as fnval(f,x). 

fnval(...,'l') treats  as continuous from the left. This means that if  has 
a jump discontinuity at x, then the value , i.e., the limit from the left, is 
returned, except when x equals the left end of the basic interval; for such x, the 
value  is returned.

If the function is multivariate, then the above statements concerning 
continuity from the left and right apply coordinatewise.

Examples The statement fnval(csapi(x,y),xx) has the same effect as the statement 
csapi(x,y,xx).

Algorithm For each entry of x, the relevant break- or knot-interval is determined and the 
relevant information assembled. Depending on whether f is in ppform or in 
B-form, nested multiplication or the B-spline recurrence (see, e.g., [PGS; X.(3)]) 
is then used vector-fashion for the simultaneous evaluation at all entries of x. 
Evaluation of a multivariate polynomial spline function takes full advantage of 
the tensor product structure.

Evaluation of a rational spline follows up evaluation of the corresponding 
vector-valued spline by division of all but its last component by its last 
component.

Evaluation of a function in stform makes essential use of stcol, and tries to 
keep the matrices involved to reasonable size.

See Also fnbrk, ppmak, rsmak, spmak, stmak

f f x+( )

f x–( )

f f
f x–( )

f x+( )
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10fnxtrPurpose Extrapolate function

Syntax g = fnxtr(f,order)
fnxtr(f)

Description g = fnxtr(f,order) returns the spline (in ppform) that agrees with the spline 
in f on the latter's basic interval but is a polynomial of the given order outside 
it, with 2 the default for order, in such a way that the spline in g satisfies at 
least order smoothness conditions at the ends of f's basic interval, i.e., at the 
new breaks.

f must be in B-form, BBform, or ppform.

While order can be any nonnegative integer, fnxtr is useful mainly when 
order is positive but less than the order of f.

If order is zero, then g describes the same spline as fn2fm(f,'B-) but is in 
ppform and has a larger basic interval.

If order is at least as big as f's order, then g describes the same pp as 
fn2fm(f,'pp') but uses two more pieces and has a larger basic interval.

If f is m-variate, then order may be an m-vector, in which case order(i) 
specifies the matching order to be used in the i-th variable, i=1:m.

If order<0, then g is exactly the same as fn2fm(f,'pp'). This unusual option 
is useful when, in the multivariate case, extrapolation is to take place in only 
some but not all variables.

fnxtr(f)  is the same as fnxtr(f,2).

Examples  Example 1. The cubic smoothing spline for given data x,y is, like any other 
`natural' cubic spline, required to have zero second derivative outside the 
interval spanned by the data sites.  Hence, if such a spline is to be evaluated 
outside that interval, it should be constructed as s = fnxtr(csaps(x,y)). 
Figure 10-4, generated by the following code, shows the difference.

rand('seed',6); x = rand(1,21); s = csaps(x,x.^3); sn = fnxtr(s);
fnplt(s,[-.5 1.4],3), hold on, fnplt(sn,[-.5 1.4],.5,'r',2)
legend('cubic smoothing spline','... properly extrapolated')
set(gca,'Fontsize',16), axis off, hold off
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Figure 10-4:  A Cubic Smoothing Spline Properly Extrapolated

Example 2.  Here is the plot of a bivariate B-spline, quadratically extrapolated 
in the first variable and not at all extrapolated in the second, as generated by

fnplt(fnxtr(spmak({0:3,0:4},1),[3,-1]))

Figure 10-5:  A Bivariate B-spline Quadratically Extrapolated In One Direction

See Also ppmak, spmak, fn2fm

(Example 1 figure)

 

cubic smoothing spline
... properly extrapolated
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10fnzerosPurpose Find zeros of function in given interval

Syntax z = fnzeros(f)
z = fnzeros(f,[a b])

Description z = fnzeros(f) provides the 2-rowed matrix z that is an ordered list of the 
zeros of the continuous univariate spline in f in its basic interval.

z = fnzeros(f,[a b])  looks for zeros only in the interval [a .. b] specified by 
the input.

Each column z(:,j) contains the left and right endpoint of an interval. These 
intervals are of three kinds:

• If the endpoints agree, then the function in f is relatively small at that point.

• If the endpoints agree to many significant digits, then the function changes 
sign across the interval, and the interval contains a zero of the function — 
provided the function is continuous there. 

• If the endpoints are not close, then the function is zero on the entire interval. 

Examples Example 1. We construct and plot a piecewise linear spline that has each of the 
three kinds of zeros, use fnzeros to compute all its zeros, and then mark the 
results on that graph.

sp = spmak(augknt(1:7,2),[1,0,1,-1,0,0,1]);
fnplt(sp)
z = fnzeros(sp)
nz = size(z,2);
hold on
plot(z(1,:),zeros(1,nz),'>',z(2,:),zeros(1,nz),'<'), hold off

This gives the following list of zeros:

z =
    2.0000    3.5000    5.0000
    2.0000    3.5000    6.0000

In this simple example, even for the second kind of zero, the two endpoints 
agree to all places.
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Example 2.  We generate a spline function with many extrema and locate all 
that are in a certain interval by computing the zeros of the spline function’s 
first derivative there.

rand('seed',23)
sp = spmak(1:21,rand(1,16)-.5);
fnplt(sp)
z = mean(fnzeros(fnder(sp),[7,14]));
zy = fnval(sp,z);
hold on, plot(z,zy,'o'), hold off
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Example 3. We construct a spline with a zero at a jump discontinuity and in 
B-form and find all the spline’s zeros in an interval that goes beyond its basic 
interval.

sp = spmak([0 0 1 1 2],[1 0 -.2]);
fnplt(sp)
z = fnzeros(sp,[.5, 2.7])
zy = zeros(1,size(z,2));
hold on, plot(z(1,:),zy,'>',z(2,:),zy,'<'), hold off

This gives the following list of zeros:

z =
    1.0000    2.0000
    1.0000    2.7000

Notice the resulting zero interval [2..2.7], due to the fact that, by definition, a 
spline in B-form is identically zero outside its basic interval.

Algorithm fnzeros first converts the function to B-form. It locates zero intervals by the 
corresponding sequence of consecutive zero B-spline coefficients. It locates the 
sign changes in the B-spline coefficients for the function, isolates them from 
each other by suitable knot insertion, and then uses the Modified Regula falsi 
to locate the corresponding sign changes in the function, if any. 

See Also fnmin, fnval

Cautionary 
Note

fnzeros may not work correctly for discontinuous functions. For example, for 
the discontinuous piecewise linear function provided by

 sp = spmak([0 0 1 1 2 2],[-1 1 -1 1]), fnzeros(sp)

will only find the zero in (1..2), but not the zero in (0..1) nor the jump through 
zero at 1.
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10frankePurpose Franke's bivariate test function

Syntax z = franke(x,y)

Description z = franke(x,y) returns the value z(i) of  Franke’s function at the site 
(x(i),y(i)), i=1:numel(x), with z of the same size as x and y (which must be 
of the same size).

Franke’s function is the following weighted sum of four exponentials:

Examples The following commands provide a plot of  Franke’s function:

pts = (0:50)/50; [x,y] = ndgrid(pts,pts); z = franke(x,y);
surf(x,y,z), view(145,-2), set(gca,'Fontsize',16)

References [1] Richard Franke, A critical comparison of some methods for interpolation of 
scattered data, Naval Postgraduate School Tech.Rep.  NPS-53-79-003, March 
1979.
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10getcurvePurpose Interactive creation of cubic spline curve

Syntax [xy,spcv] = getcurve

Description [xy,spcv] = getcurve  displays a gridded window and asks you for input. As 
you click on points in the gridded window, the broken line connecting these 
points is displayed. To indicate that you are done, click outside the gridded 
window. Then a cubic spline curve, spcv, through the point sequence, xy, is 
computed (via cscvn) and drawn. The point sequence and, optionally, the 
spline curve are output.

If you want a closed curve, place the last point close to the initial point.

If you would like the curve to have a corner at some point, click on that point 
twice (or more times) in succession.

See Also cscvn
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10knt2brk, knt2mltPurpose Convert knots to breaks and their multiplicities

Syntax knt2brk(knots)
[breaks,mults] = knt2brk(knots)
m = knt2mlt(t)
[m,sortedt] = knt2mlt(t)

Description The commands extract the distinct elements from a sequence, as well as their 
multiplicities in that sequence, with multiplicity taken in two slightly different 
senses.

knt2brk(knots)  returns the distinct elements in knots, and in increasing 
order, hence is the same as unique(knots). 

[breaks,mults] = knt2brk(knots)  additionally provides, in mults, the 
multiplicity with which each distinct element occurs in knots. Explicitly, 
breaks and mults are of the same length, and knt2brk is complementary to 
brk2knt in that, for any knot sequence knots, the two commands 
[xi,mlts] = knt2brk(knots); knots1 = brk2knt(xi,mlts); give knots1 
equal to knots.

m = knt2mlt(t)  returns a vector of the same length as t, with m(i) counting, 
in the vector sort(t), the number of entries before its ith entry that are equal 
to that entry. This kind of multiplicity vector is needed in spapi or spcol where 
such multiplicity is taken to specify which particular derivatives are to be 
matched at the sites in t. Precisely, if t is nondecreasing and z is a vector of the 
same length, then sp = spapi(knots, t, z) attempts to construct a spline s 
(with knot sequence knots) for which  equals , all . 

[m,sortedt] = knt2mlt(t)  also returns the output from sort(t).

Neither knt2brk nor knt2mlt is likely to be used by the casual user of this 
toolbox.

 Examples [xi,mlts]=knt2brk([1 2 3 3 1 3]) returns [1 2 3] for xi and [2 1 3] for 
mlts.

[m,t]=knt2mlt([1 2 3 3 1 3]) returns [0 1 0 0 1 2] for m and 
[1 1 2 3 3 3] for t.

See Also brk2knt, spapi, spcol

Dm i( )s t i( )( ) z i( ) i
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10newkntPurpose New break distribution

Syntax newknots = newknt(f,newl)
newknt(f)
[...,distfn] = newknt(...)

Description newknots = newknt(f,newl)  returns the knot sequence whose interior knots 
cut the basic interval of f into newl pieces, in such a way that a certain 
piecewise linear monotone function related to the high derivative of f is 
equidistributed. 

The intent is to choose a knot sequence suitable to the fine approximation of a 
function  whose rough approximation in f is assumed to contain enough 
information about  to make this feasible.

newknt(f) uses for newl its default value, namely the number of polynomial 
pieces in f.

[...,distfn] = newknt(...) also returns, in distfn, the ppform of that 
piecewise linear monotone function being equidistributed.

Examples If the error in the least-squares approximation sp to some data x,y by a spline 
of order k seems uneven, you might try for a more equitable distribution of 
knots by using

spap2(newknt(sp),k,x,y);

For another example, see the last part of the demo “Solving an ODE by 
Collocation”.

Algorithm This is the Fortran routine NEWNOT in PGS. With  the order of the 
piecewise-polynomial function  in pp, the function  is approximated by 
a piecewise constant function obtained by local, discrete, differentiation of the 
variation of  . The new break sequence is chosen to subdivide the basic 
interval of the piecewise-polynomial  in such a way that 

g
g
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10optkntPurpose Knot distribution “optimal” for interpolation

Syntax knots = optknt(tau,k,maxiter)
optknt(tau,k)

Description knots = optknt(tau,k,maxiter)  provides the knot sequence t that is best for 
interpolation from  at the site sequence tau, with 10 the default for the 
optional input maxiter that bounds the number of iterations to be used in this 
effort. Here, best or optimal is used in the sense of [3] and [2], and this means 
the following: For any recovery scheme  that provides an interpolant  that 
matches a given  at the sites tau(1), ..., tau(n), we may determine the 
smallest constant  for which for all smooth 
functions . 

Here, . Then we may look for the optimal 

recovery scheme as the scheme  for which   is as small as possible. 

Micchelli/Rivlin/Winograd have shown this to be interpolation from , 

with t uniquely determined by the following conditions: 

1 t(1) = ... = t(k) = tau(1);
2 t(n+1) = ... = t(n+k) = tau(n);

3 Any absolutely constant function  with sign changes at the sites 
t(k+1), ..., t(n) and nowhere else satisfies

Gaffney/Powell called this interpolation scheme optimal since it provides the 
center function in the band formed by all interpolants to the given data that, in 
addition, have their th derivative between  and  (for large ).

optknt(tau,k) is the same as optknt(tau,k,10).

Examples See the last part of the demo “Spline Interpolation” for an illustration. For the 
following highly nonuniform knot sequence 

t = [0, .0012+[0, 1, 2+[0,.1], 4]*1e-5, .002, 1];

Sk t,
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the command optknt(t,3) will fail, while the command optknt(t,3,20), 
using a high value for the optional parameter maxiter, will succeed.

Algorithm This is the Fortran routine SPLOPT in PGS. It is based on an algorithm 
described in [1], for the construction of that sign function  mentioned in (3) 
above. It is essentially Newton’s method for the solution of the resulting 
nonlinear system of equations, with aveknt(tau,k) providing the first guess 
for t(k+1), ...,t(n), and some damping used to maintain the 
Schoenberg-Whitney conditions .

See Also aptknt, aveknt, newknt

References [1] C. de Boor, “Computational aspects of optimal recovery”, in Optimal 
Estimation in Approximation Theory, C.A. Micchelli & T.J. Rivlin eds., Plenum 
Publ., New York, 1977, 69-91.

[2] P.W. Gaffney & M.J.D. Powell, “Optimal interpolation”, in Numerical 
Analysis, G.A. Watson ed., Lecture Notes in Mathematics, No. 506, 
Springer-Verlag, 1976, 90-99.

[3] C.A. Micchelli, T.J. Rivlin & S. Winograd, “The optimal recovery of smooth 
functions”, Numer. Math. 80, (1974), 903-906.
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10ppmakPurpose Put together spline in ppform

Syntax ppmak(breaks,coefs)
ppmak
ppmak(breaks,coefs,d)
ppmak(breaks,coefs,sizec)

Description The command ppmak(...) puts together a spline in ppform from minimal 
information, with the rest inferred from that information. fnbrk provides any 
or all of the parts of the completed description. In this way, the actual data 
structure used for the storage of the ppform is easily modified without any 
effect on the various fn... commands that use this construct. However, the 
casual user is not likely to use ppmak explicitly, relying instead on the various 
spline construction commands in the toolbox to construct particular splines.

ppmak(breaks,coefs) returns the ppform of the spline specified by the break 
information in breaks and the coefficient information in coefs. How that 
information is interpreted depends on whether the function is univariate or 
multivariate, as indicated by breaks being a sequence or a cell array.

If breaks is a sequence, it must be nondecreasing, with its first entry different 
from its last. Then the function is assumed to be univariate, and the various 
parts of its ppform are determined as follows:

1 The number l of polynomial pieces is computed as length(breaks)-1, and 
the basic interval is, correspondingly, the interval 
[breaks(1) .. breaks(l+1)].

2 The dimension d of the function’s target is taken to be the number of rows 
in coefs. In other words, each column of coefs is taken to be one coefficient. 
More explicitly, coefs(:,i*k+j) is assumed to contain the jth coefficient of 
the (i+1)st polynomial piece (with the first coefficient the highest and the 
kth coefficient the lowest, or constant, coefficient). Thus, with kl the number 
of columns of coefs, the order k of the piecewise-polynomial is computed as 
fix(kl/l). 

After that, the entries of coefs are reordered, by the command

 coefs = reshape(permute(reshape(coefs,[d,k,l]),[1 3 2]),[d*l,k])
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in order to conform with the internal interpretation of the coefficient array in 
the ppform for a univariate spline.

If breaks is a cell array, of length m, then the function is assumed to be 
m-variate (tensor product), and the various parts of its ppform are determined 
from the input as follows:

1 The m-vector l has length(breaks{i})-1 as its ith entry and, 
correspondingly, the m-cell array of its basic intervals has the interval 
[breaks{i}(1) .. breaks{i}(end)] as its ith entry.

2 The dimension d of the function’s target and the m-vector k of 
(coordinate-wise polynomial) orders of its pieces are obtained directly from 
the size of coefs, as follows.

a If coefs is an m-dimensional array, then the function is taken to be 
scalar-valued, i.e., d is 1, and the m-vector k is computed as 
size(coefs)./l. After that, coefs is reshaped by the command 
coefs = reshape(coefs,[1,size(coefs)]). 

b If coefs is an (r+m)-dimensional array, with sizec = size(c) say, then 
d is set to sizec(1:r), and the vector k is computed as 
sizec(r+(1:m))./l. After that, coefs is reshaped by the command 
coefs = reshape(coefs,[prod(d),sizec(r+(1:m))]).

Then, coefs is interpreted as an equivalent array of size 
[d,l(1),k(1),l(2),k(2),...,l(m),k(m)], with its 
(:,i(1),r(1),i(2),r(2),...,i(m),r(m))th entry the coefficient of

in the local polynomial representation of the function on the (hyper)rectangle 
with sides

This is, in fact, the internal interpretation of the coefficient array in the ppform 
of a multivariate spline.

ppmak prompts you for breaks and coefs.

x(μ ) breaks{μ } i(μ( ) )–( ) k(μ ) r(μ )–( )

μ 1=

m

∏

breaks{μ } i μ( )( ) .. breaks{μ } i μ( ) 1+( )[ ], μ 1:m=
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ppmak(breaks,coefs,d)  with d a positive integer, also puts together the 
ppform of a spline from the information supplied, but expects the function to be 
univariate. In that case, coefs is taken to be of size [d*l,k], with l obtained 
as length(breaks)-1, and this determines the order, k, of the spline. With this, 
coefs(i*d+j,:) is taken to be the jth components of the coefficient vector for 
the (i+1)st polynomial piece. 

ppmak(breaks,coefs,sizec) with sizec a row vector of positive integers, 
also puts together the ppform of a spline from the information supplied, but 
interprets coefs to be of size sizec (and returns an error when 
prod(size(coefs)) differs from prod(sizec)). This option is important only 
in the rare case that the input argument coefs is an array with one or more 
trailing singleton dimensions. For, MATLAB® suppresses trailing singleton 
dimensions, hence, without this explicit specification of the intended size of 
coefs, ppmak would interpret coefs incorrectly.

Examples The two splines

p1 = ppmak([1 3 4],[1 2 5 6;3 4 7 8]);
p2 = ppmak([1 3 4],[1 2;3 4;5 6;7 8],2);

have exactly the same ppform (2-vector-valued, of order 2). But the second 
command provides the coefficients in the arrangement used internally.

ppmak([0:2],[1:6]) constructs a piecewise-polynomial function with basic 
interval [0..2] and consisting of two pieces of order 3, with the sole interior 
break 1. The resulting function is scalar, i.e., the dimension d of its target is 1. 
The function happens to be continuous at that break since the first piece is 

, while the second piece is .

When the function is univariate and the dimension d is not explicitly specified, 
then it is taken to be the row number of coefs. The column number should be 
an integer multiple of the number l of pieces specified by breaks. For example, 
the statement ppmak([0:2],[1:3;4:6]) leads to an error, since the break 
sequence [0:2] indicates two polynomial pieces, hence an even number of 
columns are expected in the coefficient matrix. The modified statement 
ppmak([0:1],[1:3;4:6]) specifies the parabolic curve 

. In particular, the dimension d of its target is 2. 
The differently modified statement ppmak([0:2],[1:4;5:8]) also specifies a 

x x2 2x 3+ + x 4 x 1–( )2 5 x 1–( ) 6+ +

x 1 4,( )x2 2 5,( )x 3 6,( )+ +
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planar curve (i.e., d is 2), but this one is piecewise linear; its first polynomial 
piece is .

Explicit specification of the dimension d leads, in the univariate case, to a 
different interpretation of the entries of coefs. Now the column number 
indicates the polynomial order of the pieces, and the row number should equal 
d times the number of pieces. Thus, the statement ppmak([0:2],[1:4;5:8],2) 
is in error, while the statement ppmak([0:2],[1:4;5:8],1) specifies a scalar 
piecewise cubic whose first piece is .

If you wanted to make up the constant polynomial, with basic interval [0..1] 
say, whose value is the matrix eye(2), then you would have to use the full 
optional third argument, i.e., use the command

pp = ppmak(0:1,eye(2),[2,2,1,1]);

Finally, if you want to construct a 2-vector-valued bivariate polynomial on the 
rectangle [-1 .. 1] x [0 .. 1], linear in the first variable and constant in the 
second, say

   coefs = zeros(2,2,1); coefs(:,:,1) = [1 0; 0 1];

then the straightforward

   pp = ppmak({[-1 1],[0 1]},coefs);

will fail, producing a scalar-valued function of order 2 in each variable, as will

   pp = ppmak({[-1 1],[0 1]},coefs,size(coefs));

while the following command will succeed:

   pp = ppmak({[-1 1],[0 1]},coefs,[2 2 1]);

See the demo “Intro to ppform” for other examples.

See Also fnbrk

x 1 5,( )x 2 6,( )+

x x3 2x2 3x 4+ + +
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10rpmak, rsmakPurpose Put together rational spline

Syntax rp = rpmak(breaks,coefs)
rp = rpmak(breaks,coefs,d)
rs = rsmak(knots,coefs)
rs = rsmak(shape,parameters)

Description Both rpmak and rsmak put together a rational spline from minimal information. 
rsmak is also equipped to provide rational splines that describe standard 
geometric shapes. A rational spline must be scalar- or vector-valued.

rp = rpmak(breaks,coefs)  has the same effect as the command 
ppmak(breaks, coefs), -- except that the resulting ppform is tagged as a 
rational spline, i.e., as a rpform. 

To describe what this means, let  be the piecewise-polynomial put together 
by the command ppmak(breaks,coefs), and let  be the 
rational spline put together by the command rpmak(breaks,coefs). If v is the 
value of  at , then v(1:end-1)/v(end) is the value of  at . In other words, 

. Correspondingly, the dimension of the target of  is one 
less than the dimension of the target of . In particular, the dimension (of the 
target) of  must be at least 2, i.e., the coefficients specified by coefs must be 
d-vectors with d > 1. See ppmak for how the input arrays breaks and coefs are 
being interpreted, hence how they are to be specified in order to produce a 
particular piecewise-polynomial.

rp = rpmak(breaks,coefs,d)  has the same effect as 
ppmak(breaks,coefs,d+1), except that the resulting ppform is tagged as 
being a rpform. Note that the desire to have that optional third argument 
specify the dimension of the target requires different values for it in rpmak and 
ppmak for the same coefficient array coefs. 

rpmak(breaks,coefs,sizec) has the same effect as 
ppmak(breaks,coefs,sizec) except that the resulting ppform is tagged as 
being a rpform, and the target dimension is taken to be sizec(1)-1.

rs = rsmak(knots,coefs) is similarly related to spmak(knots,coefs), and 
rsmak(knots,coefs,sizec) to spmak(knots,coefs,sizec). In particular, 
rsmak(knots,coefs) puts together a rational spline in B-form, i.e., it provides 

R
r x( ) s x( ) w x( )⁄=

R x r x
R x( ) s x( );w x( )[ ]= r

R
R
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a rBform. See spmak for how the input arrays knots and coefs are being 
interpreted, hence how they are to be specified in order to produce a particular 
piecewise-polynomial.

rs = rsmak(shape,parameters) provides a rational spline in rBform that 
describes the shape being specified by the string shape and the optional 
additional parameters. Specific choices are:

rsmak('arc',radius,center,[alpha,beta])
rsmak('circle',radius,center)
rsmak('cone',radius,halfheight)
rsmak('cylinder',radius,height)
rsmak('southcap',radius,center)
rsmak('torus',radius,ratio)

with 1 the default value for radius, halfheight and height, and the origin the 
default for center, and the arc running through all the angles from alpha to 
beta (default is [-pi/2,pi/2]), and the cone, cylinder, and torus centered at 
the origin with their major circle in the (x,y)-plane, and the minor circle of the 
torus having radius radius*ratio, the default for ratio being 1/3.

From these, one may generate related shapes by affine transformations, with 
the help of fncmb(rs,transformation).

All fn... commands except fnint, fnder, fndir can handle rational splines.

Examples The commands

runges = rsmak([-5 -5 -5 5 5 5],[1 1 1; 26 -24 26]); 
rungep = rpmak([-5 5],[0 0 1; 1 -10 26],1);

both provide a description of the rational polynomial  on the 
interval [-5 .. 5]. However, outside the interval [-5 .. 5], the function given by 
runges is zero, while the rational spline given by rungep agrees with 

 for every .

The figure of a rotated cone is generated by the commands

fnplt(fncmb(rsmak('cone',1,2),[0 0 -1;0 1 0;1 0 0]))
axis equal, axis off, shading interp

r x( ) 1 x2 1+( )⁄=

1 x2 1+( )⁄ x
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Figure 10-6:  A Rotated Cone Given by a Rational Quadratic Spline

Figure 10-7, showing a helix with several windings, is generated by the 
commands

arc = rsmak('arc',2,[1;-1],[0 7.3*pi]);
[knots,c] = fnbrk(arc,'k','c');
helix = rsmak(knots, [c(1:2,:);aveknt(knots,3).*c(3,:); c(3,:)]);
fnplt(helix)

Figure 10-7:  A Helix

For further illustrated examples, see Chapter 7, “NURBS and Other Rational 
Splines.”

See Also fnbrk, ppmak, spmak
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10rscvnPurpose Piecewise biarc Hermite interpolation

Syntax c = rscvn(p,u)
c = rscvn(p)

Description c = rscvn(p,u) returns a planar piecewise biarc curve (in quadratic rBform) 
that passes, in order, through the given points p(:,j) and is constructed in the 
following way (see Figure 10-9).  Between any two distinct points p(:,j) and 
p(:,j+1), the curve usually consists of two  circular arcs (including 
straight-line segments) which join with tangent continuity, with the first arc 
starting at p(:,j) and normal there to u(:,j), and the second arc ending at 
p(:,j+1) and normal there to u(:,j+1), and with the two arcs written as one 
whenever that is possible. Thus the curve is tangent-continuous everywhere 
except, perhaps, at repeated points, where the curve may have a corner, or 
when the angle, formed by the two segments ending at p(:,j), is unusually 
small, in which case the curve may have a cusp at that point.

p must be a real matrix, with two rows, and at least two columns, and any 
column must be different from at least one of its neighboring columns.

u must be a real matrix with two rows, with the same number of columns as p 
(for two exceptions, see below), and can have no zero column.

c = rscvn(p) chooses the normals in the following way. For j=2:end-1, 
u(:,j) is the average of the (normalized, right-turning) normals to the vectors 
p(:,j)-p(:,j-1) and p(:,j+1)-p(:,j). If p(:,1)==p(:,end), then both end 
normals are chosen as the average of the normals to p(:,2)-p(:,1)and 
p(:,end)-p(:,end-1), thus preventing a corner in the resulting closed curve. 
Otherwise, the end normals are so chosen that there is only one arc over the 
first and last segment (not-a-knot end condition).

rscvn(p,u), with u having exactly two columns, also chooses the interior 
normals as for the case when u is absent but uses the two columns of u as the 
end-point normals.

Examples Example 1. The following code generates a description of a circle, using just 
four pieces. Except for a different scaling of the knot sequence, it is the same 
description as is supplied by rsmak('circle',1,[1;1]).

p = [1 0 -1 0 1; 0 1 0 -1 0]; c = rscvn([p(1,:)+1;p(2,:)+1],p);
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The same circle, but using just two pieces, is provided by

c2 = rscvn([0,2,0; 1,1,1]);

Example 2.  The following code plots two letters. Note that the second letter is 
the result of interpolation to just four points. Note also the use of translation 
in the plotting of the second letter.

p = [-1 .8 -1 1 -1 -1 -1; 3 1.75 .5 -1.25 -3 -3  3];
i = eye(2); u = i(:,[2 1 2 1 2 1 1]); B = rscvn(p,u);
S = rscvn([1 -1 1 -1; 2.5 2.5 -2.5 -2.5]);
fnplt(B), hold on, fnplt(fncmb(S,[3;0])), hold off
axis equal, axis off

 

Figure 10-8:  Two Letters Composed of Circular Arcs

Example 3.  The following code generates the Figure 10-9, of use in the 
discussion below of the biarc construction used here. Note the use of fntlr to 
find the tangent to the biarc at the beginning, at the point where the two arcs 
join, and at the end. 

p = [0 1;0 0];  u = [.5 -.1;-.25 .5];
plot(p(1,:),p(2,:),'k'), hold on
biarc = rscvn(p,u); breaks = fnbrk(biarc,'b');
fnplt(biarc,breaks(1:2),'b',3), fnplt(biarc,breaks(2:3),'r',3)
vd = fntlr(biarc,2,breaks);
quiver(vd(1,:),vd(2,:),vd(4,:),-vd(3,:)), hold off
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Figure 10-9:  Construction of a Biarc

Algorithm  Given two distinct points, p1 and p2, in the plane and, correspondingly, two 
nonzero vectors, u1 and u2, there is a one-parameter family of biarcs (i.e., a 
curve consisting of two arcs with common tangent at their join) starting at p1 
and normal there to u1 and ending at p2 and normal there to u2. One way to 
parametrize this family of biarcs is by the normal direction, v,  at the point q at 
which the two arcs join. With a nonzero v chosen, there is then exactly one 
choice of q, hence the entire biarc is then determined. In the construction used 
in rscvn, v is chosen as the reflection, across the perpendicular to the segment 
from p1 to p2, of the average of the vectors u1 and u2, -- after both vectors have 
been so normalized that their length is 1 and that they both point to the right 
of the segment from p1 to p2. This choice for v seems natural in the two 
standard cases: (i) u2 is the reflection of u1 across the perpendicular to the 
segment from p1 to p2; (ii) u1 and u2 are parallel. This choice of v is validated 
by Figure 10-10 which shows the resulting biarcs when p1, p2, and u2 = 
[.809;.588]are kept fixed and only the normal at p1 is allowed to vary.

Figure 10-10:  Biarcs as a Function of the Left Normal

p1 p2

q

u1

v

u2
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But it is impossible to have the interpolating biarc depend continuously at all 
four data, p1, p2, u1, u2. There has to be a discontinuity as the normal 
directions, u1 and u2, pass through the direction from p1 to p2. This is 
illustrated in Figure 10-11 which shows the biarcs when one point, p1 = [0;0], 
and the two normals, u1 = [1;1] and u2 = [1;-1], are held fixed and only the 
other point, p2, moves, on a circle around p1.

Figure 10-11:  Biarcs as a Function of One Endpoint

See Also rsmak, cscvn
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10slvblkPurpose Solve almost block-diagonal linear system

Syntax x = slvblk(blokmat,b)
x = slvblk(blokmat,b,w)

Description x = slvblk(blokmat,b)  returns the solution (if any) of the linear system Ax 
= b, with the matrix A stored in blokmat in the spline almost block-diagonal 
form. At present, only the command spcol provides such a description, of the 
matrix whose typical entry is the value of some derivative (including the 0th 
derivative, i.e., the value) of a B-spline at some site. If the linear system is 
overdetermined (i.e., has more equations than unknowns but is of full rank), 
then the least-squares solution is returned. 

The right side b may contain several columns, and is expected to contain as 
many rows as there are rows in the matrix described by blokmat.

x = slvblk(blockmat,b,w)  returns the vector x that minimizes the weighted 
sum .

Examples sp=spmak(knots,slvblk(spcol(knots,k,x,1),y.')) provides in sp the 
B-form of the spline s of order k with knot sequence knots that matches the 
given data (x,y), i.e., for which s(x) equals y.

Algorithm The command bkbrk is used to obtain the essential parts of the coefficient 
matrix described by blokmat (in one of two available forms).

A QR factorization is made of each diagonal block, after it was augmented by 
the equations not dealt with when factoring the preceding block. The resulting 
factorization is then used to solve the linear system by backsubstitution.

See Also bkbrk, spap2, spapi, spcol

Σjw j( ) Ax b–( ) j( )( )2
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10sortedPurpose Locate sites with respect to mesh sites

Syntax pointer = sorted(meshsites,sites)

Description Various commands in this toolbox need to determine the index  for which a 
given  lies in the interval , with  a given nondecreasing 
sequence, e.g., a knot sequence. This job is done by sorted in the following 
fashion.

pointer = sorted(meshsites,sites)  is the integer row vector whose j-th 
entry equals the number of entries in meshsites that are ≤ ssites(j), with 
ssites the vector sort(sites). Thus, if both meshsites and sites are 
nondecreasing, then

meshsites(pointer(j)) ≤ sites(j) < meshsites(pointer(j)+1)

with the obvious interpretations when

pointer(j) < 1 or  length(meshsites) < pointer(j) + 1 

Specifically, having pointer(j) < 1 then corresponds to having sites(j) 
strictly to the left of meshsites(1), while having length(meshsites) < 
pointer(j)+1 then corresponds to having sites(j) at, or to the right of, 
meshsites(end).

Examples The statement 

sorted([1 1 1 2 2 3 3 3],[0:4])

will generate the output 0 3 5 8 8, as will the statement 

sorted([3 2 1 1 3 2 3 1],[2 3 0 4 1])

Algorithm The indexing output from sort([meshsites(:).',sites(:).']) is used. 

j
x tj..tj 1+[ ] ti( )
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10spap2Purpose Least-squares spline approximation 

Syntax spap2(knots,k,x,y)
spap2(l,k,x,y)
spap2(...,x,y,w)
spap2({knorl1,...,knorlm},k,{x1,...,xm},y)
spap2({knorl1,...,knorlm},k,{x1,...,xm},y,w)

Description spap2(knots,k,x,y)  returns the B-form of the spline  of order k with the 
given knot sequence knots for which

(*) y(:,j) = f(x(j)), all j 

in the weighted mean-square sense, meaning that the sum 

 is minimized, with default weights equal to 1. The 

data values y(:,j) may be scalars, vectors, matrices, even ND-arrays, and  

stands for the sum of the squares of all the entries of . Data points with the 
same site are replaced by their average.

If the sites x satisfy the (Schoenberg-Whitney) conditions 

(**)

then there is a unique spline (of the given order and knot sequence) satisfying 
(*) exactly. No spline is returned unless (**) is satisfied for some subsequence 
of x.

spap2(l,k,x,y)  , with l a positive integer, returns the B-form of a 
least-squares spline approximant, but with the knot sequence chosen for you. 
The knot sequence is obtained by applying aptknt to an appropriate 
subsequence of x. The resulting piecewise-polynomial consists of l polynomial 
pieces and has k-2 continuous derivatives. If you feel that a different 
distribution of the interior knots might do a better job, follow this up with

sp1 = spap2(newknt(sp),k,x,y));

f

w(j) y(:,j) f x(j)( )– 2

j
∑

z 2

z

knots j( ) x j( ) knots j k+( )< <
j 1 … length(x), , length(knots) k–= =
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sp = spap2(...,x,y,w) lets you specify the weights w in the error measure 
(given above). w must be a vector of the same size as x, with nonnegative 
entries. All the weights corresponding to data points with the same site are 
summed when those data points are replaced by their average.

spap2({knorl1,...,knorlm},k,{x1,...,xm},y) provides a least-squares 
spline approximation to gridded data. Here, each knorli is either a knot 
sequence or a positive integer. Further, k must be an m-vector, and y must be 
an (r+m)-dimensional array, with y(:,i1,...,im) the datum to be fitted at the 
site [x{1}(i1),...,x{m}(im)], all i1, ..., im. However, if the spline is to be 
scalar-valued, then, in contrast to the univariate case, y is permitted to be an 
m-dimensional array, in which case y(i1,...,im) is the datum to be fitted at 
the site [x{1}(i1),...,x{m}(im)], all i1, ..., im. 

spap2({knorl1,...,knorlm},k,{x1,...,xm},y,w) also lets you specify the 
weights. In this m-variate case, w must be a cell array with m entries, with w{i} 
a nonnegative vector of the same size as xi, or else w{i} must be empty, in 
which case the default weights are used in the ith variable.

Examples sp = spap2(augknt([a,xi,b],4),4,x,y)

is the least-squares approximant to the data x, y, by cubic splines with two 
continuous derivatives, basic interval [a..b], and interior breaks xi, provided xi 
has all its entries in (a..b) and the conditions (**) are satisfied in some 
fashion. In that case, the approximant consists of length(xi)+1 polynomial 
pieces. If you do not want to worry about the conditions (**) but merely want to 
get a cubic spline approximant consisting of l polynomial pieces, use instead 

sp = spap2(l,4,x,y); 

If the resulting approximation is not satisfactory, try using a larger l. Else use 

sp = spap2(newknt(sp),4,x,y);

for a possibly better distribution of the knot sequence. In fact, if that helps, 
repeating it may help even more.

As another example, spap2(1, 2, x, y); provides the least-squares 
straight-line fit to data x,y, while

w = ones(size(x)); w([1 end]) = 100; spap2(1,2, x,y,w); 
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forces that fit to come very close to the first data point and to the last.

Algorithm spcol is called on to provide the almost block-diagonal collocation matrix 
, and slvblk solves the linear system (*) in the (weighted) 

least-squares sense, using a block QR factorization. 

Gridded data are fitted, in tensor-product fashion, one variable at a time, 
taking advantage of the fact that a univariate weighted least-squares fit 
depends linearly on the values being fitted.

See Also slvblk, spapi, spcol

Bj k, xi( )( )
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10spapiPurpose Spline interpolation 

Syntax spline = spapi(knots,x,y)
spapi(k,x,y)
spapi({knork1,...,knorkm},{x1,...,xm},y)
spapi(...,'noderiv')

Description spline = spapi(knots,x,y)  returns the spline  (if any) of order

k = length(knots) - length(x)

with knot sequence knots for which

(*) f(x(j)) = y(:,j), all j.

If some of the entries of x are the same, then this is taken in the osculatory 
sense, i.e., in the sense that , with m(j) := #{ i<j : x(i) 
= x(j) }, and  the -th derivative of . Thus -fold repetition of a site  
in x corresponds to the prescribing of value and the first  derivatives of  
at .  If you don’t want this, call spapi with an additional (fourth) argument, 
in which case, at each data site, the average of all data values with the same 
data site is matched.

The data values, y(:,j), may be scalars, vectors, matrices, or even ND-arrays.

spapi(k,x,y)  , with k a positive integer, merely specifies the desired spline 
order, k, in which case aptknt is used to determine a workable (though not 
necessarily optimal) knot sequence for the given sites x. In other words, the 
command spapi(k,x,y) has the same effect as the more explicit command 
spapi(aptknt(x,k),x,y).

spapi({knork1,...,knorkm},{x1,...,xm},y) returns the B-form of a 
tensor-product spline interpolant to gridded data. Here, each knorki is either 
a knot sequence, or else is a positive integer specifying the polynomial order to 
be used in the ith variable, thus leaving it to spapi to provide a corresponding 
knot sequence for the ith variable. Further, y must be an (r+m)-dimensional 
array, with y(:,i1,...,im) the datum to be fitted at the site 
[x{1}(i1),...,x{m}(im)], all i1, ..., im , unless the spline is to be 
scalar-valued, in which case, in contrast to the univariate case, y is permitted 
to be an m-dimensional array. 

f

Dm(j)f x(j)( ) y(:,j)=
Dmf m f r z
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spapi(...,'noderiv')  with the string 'noderiv' as a fourth argument, has 
the same effect as spapi(...) except that data values sharing the same site 
are interpreted differently. With the fourth argument present, the average of 
the data values with the same data site is interpolated at such a site. Without 
it, data values with the same data site are interpreted as values of successive 
derivatives to be matched at such a site, as described above, in the first 
paragraph of this Description. 

Examples spapi([0 0 0 0 1 2 2 2 2],[0 1 1 1 2],[2 0 1 2 -1])produces the unique 
cubic spline f on the interval [0..2] with exactly one interior knot, at 1, that 
satisfies the five conditions

, , , ,

These include 3-fold matching at 1, i.e., matching there to prescribed values of 
the function and its first two derivatives. 

Here is an example of osculatory interpolation, to values y and slopes s at the 
sites x by a quintic spline:

sp = spapi(augknt(x,6,2),[x,x,min(x),max(x))],[y,s,ddy0,ddy1]);

with ddy0 and ddy1 values for the second derivative at the endpoints.

As a related example, if the function sin(x) is to be interpolated at the distinct 
data sites x by a cubic spline, and its slope is also to be matched at a 
subsequence x(s), then this can be accomplished by the command

sp = spapi(4,[x x(s)], [sin(x) cos(x(s))]);

in which a suitable knot sequence is supplied with the aid of aptknt. In fact, if 
you wanted to interpolate the same data by quintic splines, simply change the 
4 to 6.

As a bivariate example, here is a bivariate interpolant.

x = -2:.5.2; y = -1:.25:1; [xx, yy] = ndgrid(x,y);
z = exp(-(xx.^2+yy.^2));
sp = spapi({3,4},{x,y},z); fnplt(sp)

As an illustration of osculatory interpolation to gridded data, here is complete 
bicubic interpolation, with the data explicitly derived from the bicubic 
polynomial , to make it easy for you to see exactly where the 

f 0+( ) 2= f 1( ) 0= Df 1( ) 1= D2f 1( ) 2= f 2–( ) 1–=

g u v,( ) u3v3=
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slopes and slopes of slopes (i.e., cross derivatives) must be placed in the data 
values supplied. Since our  is a bicubic polynomial, its interpolant, , must be 

 itself. We test this.

sites = {[0,1],[0,2]}; coefs = zeros(4,4); coefs(1,1) = 1;
g = ppmak(sites,coefs);
Dxg = fnval(fnder(g,[1,0]),sites);
Dyg = fnval(fnder(g,[0,1]),sites);
Dxyg = fnval(fnder(g,[1,1]),sites);
f = spapi({4,4}, {sites{1}([1,2,1,2]),sites{2}([1,2,1,2])}, ...

[fnval(g,sites), Dyg ; ...
Dxg.'         , Dxyg]);

if any( squeeze( fnbrk(fn2fm(f,'pp'), 'c') ) - coefs )
'something went wrong', end

Algorithm spcol is called on to provide the almost-block-diagonal collocation matrix 
 (with repeats in x denoting derivatives, as described above), and 

slvblk solves the linear system (*), using a block QR factorization. 

Gridded data are fitted, in tensor-product fashion, one variable at a time, 
taking advantage of the fact that a univariate spline fit depends linearly on the 
values being fitted.

See Also csapi, spap2, spaps, spline

Limitations The given (univariate) knots and sites must satisfy the Schoenberg-Whitney 
conditions for the interpolant to be defined. Assuming the site sequence x to be 
nondecreasing, this means that we must have 

, all 

(with equality possible at knots(1) and knots(end)). In the multivariate case, 
these conditions must hold in each variable separately.

g f
g

Bj k, x( )( )

knots j( ) x j( ) knots j k+( )< < j
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10spapsPurpose Smoothing spline

Syntax sp = spaps(x,y,tol)
[sp,values] = spaps(x,y,tol)
[sp,values,rho] = spaps(x,y,tol)
[...] = spaps(x,y,tol,arg1,arg2,...)
[...] = spaps({x1,...,xr},y,tol,...)

Description sp = spaps(x,y,tol) returns the B-form of the smoothest function  that lies 
within the given tolerance tol of the given data points (x(j), y(:,j)), 
j=1:length(x). The data values y(:,j) may be scalars, vectors, matrices, 
even ND-arrays. Data points with the same data site are replaced by their 
weighted average, with its weight the sum of the corresponding weights, and 
the tolerance tol is reduced accordingly.

[sp,values] = spaps(x,y,tol) also returns the smoothed values, i.e., 
values is the same as fnval(sp,x).

Here, the distance of the function  from the given data is measured by

with the default choice for the weights w making  the composite 
trapezoidal rule approximation to , and  denoting the sum 
of squares of the entries of . 

Further, smoothest means that the following roughness measure is minimized:

where  denotes the mth derivative of . The default value for m is 2, the 
default value for the roughness measure weight  is the constant 1, and this 
makes  a cubic smoothing spline.

When tol is nonnegative, then the spline   is determined as the unique 
minimizer of the expression  , with the smoothing parameter 

 (optionally returned) so chosen that   equals tol. Hence, when m is 2, 
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then, after conversion to ppform, the result should be the same (up to roundoff) 
as obtained by . Further, when tol is zero, then the 
‘‘natural’’ or variational spline interpolant of order  is returned. For large 
enough tol, the least-squares approximation to the data by polynomials of 
degree <m is returned.

When tol is negative, then ρ is taken to be -tol.

The default value for the weight function  in the roughness measure is the 
constant function 1. But you may choose it to be, more generally, a piecewise 
constant function, with breaks only at the data sites. Assuming the vector x to 
be strictly increasing, you specify such a piecewise constant  by inputting tol 
as a vector of the same size as x. In that case, tol(i) is taken as the constant 
value of  on the interval (x(i-1) .. x(i)), i=2:length(x), while tol(1) 
continues to be used as the specified tolerance.

[sp,values,rho] = spaps(x,y,tol) also returns the actual value of  used 
as the third output argument.

[...] = spaps(x,y,tol,arg1,arg2,...) lets you specify the weight vector w 
and/or the integer m, by supplying them as an argi. For this, w must be a 
nonnegative vector of the same size as x; m must be 1 (for a piecewise linear 
smoothing spline), or 2 (for the default cubic smoothing spline), or 3 (for a 
quintic smoothing spline).

If the resulting smoothing spline, sp, is to be evaluated outside its basic 
interval, it should be replaced by fnxtr(sp,m) to ensure that its m-th derivative 
is zero outside that interval. 

[...] = spaps({x1,...,xr},y,tol,...) returns the B-form of an r-variate 
tensor-product smoothing spline that is roughly within the specified tolerance 
to the given gridded data. (For scattered data, use tpaps.) Now y is expected to 
supply the corresponding gridded values, with size(y) equal to 
[length(x1),...,length(xr)] in case the function is scalar-valued, and 
equal to [d,length(x1),...,length(xr)] in case the function is d-valued. 
Further, tol must be a cell array with r entries, with tol{i} the tolerance used 
during the i-th step when a univariate (but vector-valued) smoothing spline in 
the i-th variable is being constructed. The optional input for m must be an 
r-vector (with entries from the set {1,2,3}), and the optional input for w must 

csaps x y ρ ρ 1+( )⁄, ,( )
2m

λ

λ

λ

ρ
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be a cell array of length r, with w{i} either empty (to indicate that the default 
choice is wanted) or else a positive vector of the same length as xi.

Examples The statements

w = ones(size(x)); w([1 end]) = 100;
sp = spaps(x,y, 1.e-2, w, 3);

give a quintic smoothing spline approximation to the given data that close to 
interpolates the first and last datum, while being within about 1.e-2 of the 
rest.

x = -2:.2:2; y=-1:.25:1; [xx,yy] = ndgrid(x,y); rand('seed',39);
z = exp(-(xx.^2+yy.^2)) + (rand(size(xx))-.5)/30;
sp = spaps({x,y},z,8/(60^2));  fnplt(sp), axis off

produces the figure below, showing a smooth approximant to noisy data from a 
smooth bivariate function. Note the use of ndgrid here; use of meshgrid would 
have led to an error.

Algorithm Reinsch’s approach [1] is used (including his clever way of choosing the 
equation for the optimal smoothing parameter in such a way that a good initial 
guess is available and Newton’s method is guaranteed to converge and to 
converge fast).

See Also csaps, spap2, spapi, tpaps

References [1] C. Reinsch, ‘‘Smoothing by spline functions’’, Numer. Math. 10 (1967), 177
183.
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10spcol Purpose B-spline collocation matrix

Syntax colmat = spcol(knots,k,tau)
colmat = spcol(knots,k,tau,arg1,arg2,...)

Description colmat = spcol(knots,k,tau)  returns the matrix, with length(tau) rows 
and length(knots)-k columns, whose th entry is 

This is the value at  of the th derivative of the th B-spline of order 
k for the knot sequence knots. Here, tau is a sequence of sites, assumed to be 
nondecreasing, and , i.e.,  is , 
all .

colmat = spcol(knots,k,tau,arg1,arg2,...) also returns that matrix, but 
gives you the opportunity to specify some aspects.

If one of the argi is a string with the same first two letters as in 'slvblk', the 
matrix is returned in the almost block-diagonal format (specialized for splines) 
required by slvblk (and understood by bkbrk).

If one of the argi is a string with the same first two letters as in 'sparse', then 
the matrix is returned in the sparse format of MATLAB®.

If one of the argi is a string with the same first two letters as in 'noderiv', 
multiplicities are ignored, i.e.,  is taken to be 1 for all .

Examples To solve approximately the non-standard second-order ODE

on the interval , using cubic splines with 10 polynomial pieces, you can 
use spcol in the following way:

tau = linspace(0,pi,101); k = 4;
knots = augknt(linspace(0,pi,11),k);
colmat = spcol(knots,k,brk2knt(tau,3));
coefs = (colmat(3:3:end,:)/5-colmat(1:3:end,:))\(-sin(2*tau).');
sp = spmak(knots,coefs.');

i j,( )

Dm i( )Bj tau i( )( )

tau i( ) m i( ) j

m knt2mlt tau( )= m i( ) # j i< :tau j( ) tau i( )={ }
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You can check how well this spline satisfies the ODE by computing and plotting 
the residual, , on a fine mesh:

t = linspace(0,pi,501); 
yt = fnval(sp,t);
D2yt = fnval(fnder(sp,2),t);
plot(t,D2yt - 5*(yt-sin(2*t)))
title(['residual error; to be compared to max(abs(D^2y)) = ',...
 num2str(max(abs(D2yt)))])

The statement spcol([1:6],3,.1+[2:4]) provides the matrix

ans = 

0.5900   0.0050        0      
0.4050   0.5900   0.0050 

0   0.4050   0.5900 

in which the typical row records the values at 2.1, or 3.1, or 4.1, of all B-splines 
of order 3 for the knot sequence 1:6. There are three such B-splines. The first 
one has knots 1,2,3,4, and its values are recorded in the first column. In 
particular, the last entry in the first column is zero since it gives the value of 
that B-spline at 4.1, a site to the right of its last knot.

If you add the string 'sl' as an additional input to spcol, then you can ask 
bkbrk to extract detailed information about the block structure of the matrix 
encoded in the resulting output from spcol. Thus, the statement 
bkbrk(spcol(1:6,3,.1+2:4,'sl')) gives:

block 1 has 2 row(s)
0.5900   0.0050        0      
0.4050   0.5900   0.0050 

next block is shifted over 1 column(s)
block 2 has 1 row(s)      

0.4050   0.5900   0.0050 
next block is shifted over 2 column(s)

Algorithm This is the most complex command in this toolbox since it has to deal with 
various ordering and blocking issues. The recurrence relations are used to 
generate, simultaneously, the values of all B-splines of order k having anyone 
of the tau(i) in their support. 

D2y t( ) 5 y t( ) 2t( )sin–( )⋅–
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A separate calculation is carried out for the (presumably few) sites at which 
derivative values are required. These are the sites tau(i) with . For 
these, and for every order , with  equal to , 
values of all B-splines of that order are generated by recurrence and used to 
compute the th derivative at those sites of all B-splines of order k.

The resulting rows of B-spline values (each row corresponding to a particular 
tau(i)) are then assembled into the overall (usually rather sparse) matrix. 

When the optional argument 'sl' is present, these rows are instead assembled 
into a convenient almost block-diagonal form that takes advantage of the fact 
that, at any site tau(i), at most k B-splines of order k are nonzero. This fact 
(together with the natural ordering of the B-splines) implies that the 
collocation matrix is almost block-diagonal, i.e., has a staircase shape, with the 
individual blocks or steps of varying height but of uniform width k.

The command slvblk is designed to take advantage of this storage-saving form 
available when used, in spap2, spapi, or spaps, to help determine the B-form 
of a piecewise-polynomial function from interpolation or other approximation 
conditions.

See Also slvblk, spap2, spapi

Limitations The sequence tau is assumed to be nondecreasing.

m i( ) 0>
k j– j, j0 j0 1– … 0, , ,= j0 max m( )
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10spcrv Purpose Spline curve by uniform subdivision

Syntax spcrv(c,k)
spcrv(c)
spcrv(c,k,maxpnt)

Description spcrv(c,k)  provides a dense sequence  of points on the uniform 
B-spline curve  of order k with B-spline coefficients c. Explicitly, this is the 
curve

with  the B-spline with knots , and n the number of 
coefficients in c, i.e., [d,n] equals size(c). 

spcrv(c) chooses the order k to be 4.

spcrv(c,k,maxpnt) makes sure that at least maxpnt points are generated. The 
default value for the maximum number of sites tt to be generated is 100.

The parameter interval that the site sequence tt fills out uniformly is the 
interval [k/2 .. (n-k/2)].

The output consists of the array .

Examples The following would show a questionable broken line and its smoothed version: 

points = [0 0 1 1 0 -1 -1 0 0 ;
0 0 0 1 2 1 0 -1 -2]; 

plot(points(1,:),points(2,:),':') 
values = spcrv(points,3); 
hold on, plot(values(1,:),values(2,:)), hold off

Algorithm Repeated midpoint knot insertion is used until there are at least maxpnt sites. 
There are situations where use of fnplt would be more efficient.

See Also fnplt
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10splinetoolPurpose Experiment with some spline approximation methods

Syntax splinetool
splinetool(x,y) 

Description splinetool  is a graphical user interface (GUI), whose initial menu provides 
you with various choices for data including the option of importing some data 
from the workspace.

splinetool(x,y) brings up the GUI with the specified data x and y, which are 
vectors of the same length.

Remarks The Spline Tool is shown below comparing cubic spline interpolation with a 
smoothing spline on sample data created by adding noise to the cosine function. 



splinetool

10-95

Approximation Methods
The approximation methods and options supported by the GUI are shown 
below.

Graphs
You can generate and compare several approximations to the same data. One 
of the approximations is always marked as “current” using a thicker line width. 
The following displays are available:

• Data graph. It shows:

- The data

- The approximations chosen for display in List of approximations

- The current knot sequence or the current break sequence

• Auxiliary graph (if viewed) for the current approximation. You can invoke 
this graph by selecting any one of the items in the View menu. It shows one 
of the following:

Approximation 
Method

Option

Cubic Interpolating 
Spline

Adjust the type and values of the end conditions.

Smoothing Spline Choose between cubic (order 4) and quintic (order 6) 
splines. Adjust the value of the tolerance and/or 
smoothing parameter. Adjust the weights in the 
error and roughness measures.

Least-Squares 
Approximation

Vary the order from 1 to 14. The default order is 4, 
which gives cubic approximating splines. Modify 
the number of polynomial pieces. Add and move 
knots to improve the fit. Adjust the weights in the 
error measure.

Spline Interpolation Vary the order from 2 to 14. The default order is 4, 
which gives cubic spline interpolants. If the default 
knots supplied are not satisfactory, you can move 
them around to vary the fit.
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- The first derivative 

- The second derivative

- The error

By default, the error is the difference between the given data values and the 
value of the approximation at the data sites. In particular, the error is zero (up 
to round-off) when the approximation is an interpolant. However, if you 
provide the data values by specifying a function, then the error displayed is the 
difference between that function and the current approximation. This also 
happens if you change the y-label of the data graph to the name of a function.

Menu Options
You can annotate and print the graphs with the File -> Print to Figure menu. 

You can export the data and approximations to the workspace for further use 
or analysis with the File -> Export Data and File -> Export Spline menus, 
respectively.

You can create, with the File -> Generate M-file menu, a function M-file that 
you can use to generate, from the original data, any or all graphs currently 
shown. This M-file also provides you with a written record of the Spline 
Toolbox™ commands used to generate the current graph(s).

You can save, with the Replicate button, the current approximation before you 
experiment further. If, at a later time, you click on the approximation so saved, 
splinetool restores everything to the way it was, including the data used in 
the construction of the saved approximation. This is true even if, since saving 
this approximation, you have edited the data while working on other 
approximations.

You can add, delete, or move data, knots, and breaks by right-clicking in the 
graph, or selecting the appropriate item in the Edit menu.

You can toggle the grid or the legend in the graph(s) with the Tools menu.

Examples • “Exploring End Conditions For Cubic Spline Interpolation” on page 10-97

• “Estimating the Second Derivative at an Endpoint” on page 10-100

• “Least-Squares Approximation” on page 10-101

• “Smoothing Spline” on page 10-103
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Exploring End Conditions For Cubic Spline Interpolation
The purpose of this example is to explore the various end conditions available 
with cubic spline interpolation:

1 Type splinetool at the command line.

2 Select Import your own data from the initial screen, and accept the default 
function. You should see the following display. 

The default approximation shown is the cubic spline interpolant with the 
not-a-knot end condition.

The vector x of data sites is linspace(0,2*pi,31) and the values are 
cos(x). This differs from simply providing the vector y of values in that the 
cosine function is explicitly recorded as the underlying function. Therefore, 
the error shown in the graph is the error in the spline as an approximation 
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to the cosine rather than as an approximation to the given values. Notice the 
resulting relatively large error, about 5e-5, near the endpoints.

3 For comparison, follow these steps:

- Click on New in the List of approximations.

- In Approximation method, select complete from the list of End 
conditions. 

- Since the first derivative of the cosine function is sine, adjust the 
first-derivative values to their known values of zero at both the left end 
and the right end. 

This procedure results in the display shown below (after the mouse is used 
to move the Legend further down). Note that the right end slope is zero only 
up to round-off. Bottomline tells you that the toolbox function csape was 
used to create the spline.
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Be impressed by the improvement in the error, which is only about 5e-6.

4 For further comparison, follow these steps:

- Click on New in the List of approximations.

- In Approximation method, select 'natural' from the list of End 
conditions. 

Note the deterioration of the approximation near the ends, an error of about 
2e-3, which is much worse than with the not-a-knot end conditions. 

5 For a final comparison, follow these steps:

- Click on New in the List of approximations.
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- Since we know that the cosine function is periodic, in Approximation 
method, select periodic from the list of End conditions. 

Note the dramatic improvement in the approximation, back to an error of 
about 5e-6, particularly compared to the 'natural' end conditions.

Estimating the Second Derivative at an Endpoint
This example uses cubic spline interpolation and least-squares approximation 
to determine an estimate of the initial acceleration for a drag car:

1 Type splinetool at the command line or if the GUI is already running, click 
on File->Restart. 

2 Choose Richard Tapia’s drag racing data. These data show the distance 
traveled by a drag car as a function of time. The message window asks you 
to estimate the initial acceleration by setting the initial speed to zero. Click 
on OK, or use Space or Enter, to remove the message window.

3 In Approximation method, select complete from the list of End 
conditions.

4 Adjust the initial speed by changing the first derivative at the left endpoint 
to zero.

5 Look for the value of the initial acceleration, which is given by the value of 
the second derivative at the left endpoint. You can toggle between the first 
derivative and the second derivative at this endpoint by clicking on the left 
end button. The value of the second derivative should be around 187 in the 
units chosen. Choose View->Show 2nd Derivative to see this graphically.

6 For comparison, click on New, then choose Least-Squares Approximation 
as the Approximation method. With this method, you can no longer specify 
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end conditions. Instead, you may vary the order of the method. Verify that 
the initial acceleration is close to the cubic interpolation value.

The results of this procedure are shown below.

Least-Squares Approximation
This example encourages you to place five interior knots in such a way that the 
least-squares approximation to these data by cubic splines has an absolute 
error no bigger than .04 everywhere:

1 Type splinetool at the command line or if the GUI is already running, click 
on File->Restart. 

2 Choose Titanium heat data.
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3 Select Least-Squares Approximation as the Approximation method. 

4 Notice how poorly this approximates the data since there are no interior 
knots. To view the current knots and add new knots, choose knots from 
Data, breaks/knots, weights. The knots are now listed in knots, and also 
displayed in the data graph as vertical lines. Notice that there are just the 
two end knots, each with multiplicity 4.

5 Right-click in the data graph and choose Add Knot. This brings up 
crosshairs for you to move with the mouse. Its precise horizontal location is 
shown in the edit field below the list of knots. A mouse click places a new 
knot at the current location of the crosshairs. One possible strategy is to 
place the additional knot at the place of maximum absolute error, as shown 
in the auxiliary graph below the data graph.

If you right-click and choose Replicate Knot, you will increase the 
multiplicity of the current knot, which is shown by its repeated occurrence 
in Knots. If you don’t like a particular knot, you can delete it. To delete a 
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specific knot, you must first select it in either the list of knots or the data 
graph, and then right-click in the graph and choose Delete Knot. 

6 You could also ask for an approximation using six polynomial pieces, which 
corresponds to five interior knots. To do this, enter 6 as # pieces in Data, 
breaks/knots, weights.

7 After you have the five interior knots, try to make the error even smaller by 
moving the knots. To do this, select the knot you want to move by clicking 
on its vertical line in the graph, then use the interface control below Knots 
in Data, breaks/knots, weights and observe how the error changes with the 
movement of the knot. You can also use the edit field to overwrite the 
current knot location. You could also try adjust, which redistributes the 
current knot sequence. 

8 Use Replicate in List of approximations to save any good knot distribution 
for later use. Rename the replicated approximation to lstsqr using 
Rename. To return to the original approximation, click on its name in List 
of approximations.

Smoothing Spline
This example experiments with smoothing splines:

1 Type splinetool at the command line or, if the GUI is already running, 
click on File->Restart. 

2 Choose Titanium heat data.

3 In Approximation method, choose Smoothing Spline.

4 Vary Parameter between 0 and 1, which changes the approximation from 
the least-squares straight-line approximation to the “natural” cubic spline 
interpolant.

5 Vary Tolerance between 0 and some large value, even inf. The 
approximation changes from the best possible one, the “natural” cubic spline 
interpolant, to the least-squares straight-line approximation.

6 As you increase the Parameter value or decrease the Tolerance value, the 
error decreases. However, a smaller error corresponds to more roughness, as 
measured by the size of the second derivative. To see this, choose 
View->Show 2nd Derivative and vary the Parameter and Tolerance 
values once again.
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7 This step modifies the weights in the error measure to force the 
approximation to pass through a particular data point.

- Set Tolerance to 0.2. Notice that the approximation does not pass 
through the highest data point. To see the large error at this site, choose 
View->Error.

- To force the smoothing spline to go through this point, choose Error 
Weights from Data, breaks/knots, weights. 

- Click on the highest data point in the graph and notice its site, which is 
indicated in Sites and Values. 

- Use the edit field beneath the list of weights to change the current weight 
to 1000. Notice how much closer the smoothing spline now comes to that 
highest data point, and the decrease in the error at that site. Turn on the 
grid, by Tools -> Grid, to locate the error at that site more readily.

8 This step modifies the weights in the roughness measure to permit a more 
accurate but less smooth approximation in the peak area while insisting on 
a smoother, hence less accurate, approximation away from the peak area. 

- Choose Jumps in Roughness Weight from Data, breaks/knots, weights. 

- Choose View->Show 2nd Derivative

- Select any data point to the left of the peak in the data.

- Set the jump at the selected site to -1 by changing its value in the edit field 
below it. Since the roughness weight for the very first site interval is 1, you 
have just set the roughness weight to the right of the highlighted site to 0. 
Correspondingly, the second derivative has become relatively small to the 
left of that site.

- Select any data point to the right of the peak in the data.

- Set the jump across the selected site to 1. Since the roughness weight just 
to the left of the highlighted site is 0, you have just set the roughness 
weight to the right of the highlighted site to 1. Correspondingly, the second 
derivative has become relatively small to the right of that site. The total 
effect is a very smooth but not very accurate fit away from the peak, while 
in the peak area, the spline fit is much better but the second derivative is 
much larger, as is shown in the auxiliary graph below. 

At the sites where there is a jump in the roughness weight, there is a 
corresponding jump in the second derivative. If you increase the 
Parameter value, the error across the peak area decreases but the second 
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derivative remains quite large, while the opposite holds true away from 
the peak area.

See Also csape, csapi, csaps, spap2, spapi, spaps
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10splpp, sprppPurpose Taylor coefficients from local B-coefficients

Syntax [v,b] = splpp(tx,a)
[v,b] = sprpp(tx,a)

Description These are utility commands of use in the conversion from B-form to ppform 
(and in certain evaluations), but of no interest to the casual user. 

[v,b] = splpp(tx,a) provides the matrices v and b, both of the same size 
[r,k] as a, and related to the input in the following way. 

For i=1:r, b(i,:) are the B-coefficients, with respect to the knot sequence 
[tx(i,1:k-1),0,...,0], of the polynomial of order k on the interval 
[tx(i,k-1) .. tx(i,k)] whose k B-spline coefficients, with respect to the 
knot sequence tx(i,:), are in a(i,:). This is done by repeated knot insertion 
(of the knot 0). It is assumed that tx(i,k-1)<0<=tx(i,k).

For i=1:r, v(i,:) are the polynomial coefficients for that polynomial, i.e., 
v(i,j) is the number , j=1:k, with  having the knots 
tx(i,:) and the B-coefficients a(i,:).

[v,b] = sprpp(tx,a) carries out exactly the same job, except that now b(i,:) 
are the B-coefficients for that polynomial with respect to the knot sequence 
[0,...,0,tx(i,k: 2*(k-1))], and, correspondingly, v(i,j) is 

, j=1:k. Also, now it is assumed that 
tx(i,k-1)<=0<tx(i,k).

Examples The statement [v,b]=splpp([-2 -1 0 1],[0 1 0]) provides the sequence

v = -1.0000 -1.0000 0.5000 = 

with  the B-spline with knots -2, -1, 0, 1. This is so because the l in splpp 
indicates the limit from the left, and the second argument, [0 1 0], indicates 
the spline s in question to be 

i.e., this particular linear combination of the third-order B-splines for the knot 
sequence ..., -2, -1,0,1,... (Note that the values calculated do not depend on the 
knots marked ?.) The above statement also provides the sequence 

Dk j– s 0–( ) k j–( )!⁄ s

Dk j– s 0+( ) k j–( )!⁄

D2s 0–( ) 2⁄ Ds 0–( ) s 0–( ), ,

s

s 0= *B .| ? 2–, 1–, 0,[ ]( ) 1+ *B .| 2– 1–, 0, 1,[ ]( ) 0+ *B .| 1– 0, 1, ?,[ ]( )
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b = 0 1.0000 0.5000 of B-spline coefficients for the polynomial piece of s on 
the interval [-1. .0], and with respect to the knot sequence ?, -2, -1, 0, 0, ?. 

In other words, on the interval [-1. .0], the B-spline with knots 2, -1, 0, 1 can be 
written 

 The statement [v,b]=sprpp([-1 0 1 2],[1 0 0]) provides the sequence

    v = [0.5000 -1.0000 0.5000] = 

with  the B-spline with knots ?,-1,0,1. Its polynomial piece on the interval 
[0..1] is independent of the choice of ?, so we might as well think of ? as -2, i.e., 
we are dealing with the same B-spline as before. Note that the last two 
numbers agree with the limits from the left computed above, while the first 
number does not. This reflects the fact that a quadratic B-spline with simple 
knots is continuous with continuous first, but discontinuous second, derivative. 
(It also reflects the fact that the leftmost knot of a B-spline is irrelevant for its 
right-most polynomial piece.) The sequence b = 0.5000 0 0 also provided 
states that, on the interval [0. .1], the B-spline  can be 
written

0*B .| ? 2–, 1–, 0,[ ]( ) 1+ *B .| 2– 1–, 0, 0,[ ]( ) 5+ *B .| 1– 0, 0, ?,[ ]( )

D2s 0+( ) 2⁄ Ds 0+( ) s 0+( ), ,

s

B ·| ? 1– 0 1, , ,[ ]( )

.5*B .| 0 0, 0, 1,[ ]( ) 0+ *B .| 0 0, 1, 2,[ ]( ) 0+ *B .| 0 1, 2, ?,[ ]( )
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10spmak Purpose Put together spline in B-form

Syntax spmak(knots,coefs)
spmak(knots,coefs,sizec)
spmak

Description The command spmak(...) puts together a spline function in B-form, from 
minimal information, with the rest inferred from the input. fnbrk returns all 
the parts of the completed description. In this way, the actual data structure 
used for the storage of this form is easily modified without any effect on the 
various fn... commands that use this construct.

spmak(knots,coefs) returns the B-form of the spline specified by the knot 
information in knots and the coefficient information in coefs.

The action taken by spmak depends on whether the function is univariate or 
multivariate, as indicated by knots being a sequence or a cell array. For the 
description, let sizec be size(coefs).

If knots is a sequence (required to be non-decreasing), then the spline is taken 
to be univariate, and its order k is taken to be length(knots)-sizec(end). 
This means that each ‘column’ coefs(:,j) of coefs is taken to be a B-spline 
coefficient of the spline, hence the spline is taken to be sizec(1:end-1)-valued. 
The basic interval of the B-form is [knots(1) .. knots(end)].

Knot multiplicity is held to be ≤ k. This means that the coefficient coefs(:,j) 
is simply ignored in case the corresponding B-spline has only one distinct knot, 
i.e., in case knots(j) equals knots(j+k).

If knots is a cell array, of length m, then the spline is taken to be m-variate, and 
coefs must be an (r+m)-dimensional array, – except when the spline is to be 
scalar-valued, in which case, in contrast to the univariate case, coefs is 
permitted to be an m-dimensional array, but sizec is reset by

sizec = [1, sizec]; r = 1;

With this, the spline is sizec(1:r)-valued, the ith entry of the m-vector k is 
computed as length(knots{i}) - sizec(r+i), i=1:m, and the ith entry of the 
cell array of basic intervals is set to [knots{i}(1), knots{i}(end)].
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spmak(knots,coefs,sizec) lets you supply the intended size of the array 
coefs. Assuming that coefs is correctly sized, this is of concern only in the rare 
case that coefs has one or more trailing singleton dimensions. For, MATLAB® 
suppresses trailing singleton dimensions, hence, without this explicit 
specification of the intended size of coefs, spmak would interpret coefs 
incorrectly.

spmak prompts you for knots and coefs.

Examples spmak(1:6,0:2) constructs a spline function with basic interval [1. .6], with 6 
knots and 3 coefficients, hence of order 6 - 3 = 3. 

spmak(t,1) provides the B-spline  in B-form.

The coefficients may be d-vectors (e.g., 2-vectors or 3-vectors), in which case the 
resulting spline is a curve or surface (in R2 or R3).

If the intent is to construct a 2-vector-valued bivariate polynomial on the 
rectangle , linear in the first variable and constant in the 
second, say

 coefs = zeros([2 2 1]); coefs(:,:,1) = [1 0;0 1];

then the straightforward

sp = spmak({[-1 -1 1 1],[0 1]},coefs);

will result in the error message ‘There should be no more knots than 
coefficients’, because the trailing singleton dimension of coefs will not be 
perceived by spmak, while proper use of that third argument, as in

sp = spmak({[-1 -1 1 1],[0 1]},coefs,[2 2 1]);

will succeed. Replacing here [2 2 1] by size(coefs) would not work.

See the demo “Intro to B-form” for other examples.

See Also spbrk

Diagnostics There will be an error return if the proposed knot sequence fails to be 
nondecreasing, or if the coefficient array is empty, or if there are not more 
knots than there are coefficients. If the spline is to be multivariate, then this 
last diagnostic may be due to trailing singleton dimensions in coefs.

B •|t( )

1..– 1[ ] 0..1[ ]×
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10sptermsPurpose Explanation of Spline Toolbox™ terms

Syntax spterms(term)
expl = spterms(term)
[expl,term] = spterms(term)

Description spterms(term) provides, in a message box, an explanation of the technical 
term indicated by the string term as used in the Spline Toolbox product and, 
specifically, in the GUI splinetool. Only the first few (but at least two) letters 
of the desired term need to be specified, and the full term is shown in the title 
of the message box.

expl = spterms(term) returns, in expl, the string, or cell array of strings, 
comprising the explanation of the desired term.

[...,term] = spterms(...)  also returns, in term, the fully spelled-out term 
actually used.

Examples spterms('sp') gives an explanation of the term ‘spline’, while 
spterms('spline i') explains the terms ‘spline interpolation’.

help spterms provides the list of all available terms.

See Also splinetool, “List of Terms” on page A-3 in the Spline Toolbox documentation.
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10stcolPurpose Scattered translates collocation matrix

Syntax colmat = stcol(centers,x,type)
colmat = stcol(...,'tr')

Description colmat = stcol(centers,x,type) is the matrix whose (i,j)th entry is 

with the bivariate functions  and the number n depending on the centers 
and the string type, as detailed in the description of stmak. 

centers and x must be matrices with the same number of rows.

The default for type is the string 'tp', and for this default, n equals 
size(centers,2), and the functions  are given by

with  the thin-plate spline basis function

and with  denoting the Euclidean norm of the vector .

Note  See stmak for a description of other possible values for type.

The matrix colmat is the coefficient matrix in the linear system

that the coefficients  of the function   must satisfy in order that 
 interpolate the value  at the site x(:,i), all i.

colmat = stcol(...,'tr') returns the transpose of the matrix returned by 
stcol(...).

Examples Example 1. The following evaluates and plots the function 

ψj x(:,i)( ), i=1:size(x,2) j=1:n,

ψj

ψj

ψj x( ) ψ= x centers(:,j)–( ), j=1:n

ψ

ψ x( ) = x 2 x 2log

x x

ajψj x(:,i)( )
j

∑ yi,= i=1:size(x,2)

aj f Σjajψj=
f yi
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on a regular mesh, with  the above thin-plate basis function, and with c1, c2, 
c3 three points on the unit circle; see the figure below.

a = [0,2/3*pi,4/3*pi]; centers = [cos(a), 0; sin(a), 0];
[xx,yy] = ndgrid(linspace(-2,2,45)); 
xy = [xx(:) yy(:)].';
coefs = [1 1 1 -3.5];
zz = reshape( coefs*stcol(centers,xy,'tr') , size(xx));
surf(xx,yy,zz), view([240,15]), axis off

Example 2. The following also evaluates, on the same mesh, and plots the 
length of the gradient of the function in Example 1.

zz = reshape( sqrt(...
   ([coefs,0]*stcol(centers,xy,'tp10','tr')).^2 + ...
   ([coefs,0]*stcol(centers,xy,'tr','tp01')).^2), size(xx));
figure, surf(xx,yy,zz), view([220,-15]), axis off

See Also spcol, stmak

f x( ) ψ x c1–( ) ψ x c2–( ) ψ x c3–( ) 3.5ψ x( )–+ +=

ψ
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10stmakPurpose Put together function in stform

Syntax stmak(centers,coefs)
st = stmak(centers,coefs,type)
st = stmak(centers,coefs,type,interv)

Description stmak(centers,coefs) returns the stform of the function  given by

with

the thin-plate spline basis function, and with  denoting the Euclidean norm 
of the vector .

centers and coefs must be matrices with the same number of columns.

st = stmak(centers,x,type) stores in st the stform of the function  given 
by

 with the  as indicated by the string type, which can be one of the following:

• 'tp00', for the thin-plate spline;

• 'tp10', for the first derivative of a thin-plate spline wrto its first argument;

• 'tp01', for the first derivative of a thin-plate spline wrto its second 
argument;

•  'tp', the default. 

Here are the details.

f

f x( ) coefs(:,j) ψ x centers(:,j)–( )⋅
j 1=

n

∑=

ψ x( ) = x 2 x 2log

x
x

f

f x( ) coefs(:,j) ψj x( )⋅
j 1=

n

∑=

ψj
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st = stmak(centers,coefs,type,interv)  also specifies the basic interval 
for the stform, with interv{j} specifying, in the form [a,b], the range of the 
jth variable. The default for interv is the smallest such box that contains all 
the given centers.

Examples Example 1. The following generates the figure below, of the thin-plate spline 
basis function, , but suitably restricted to show that this 
function is negative near the origin. For this, the extra lines are there to 
indicate the zero level.

inx = [-1.5 1.5]; iny = [0 1.2];
fnplt(stmak([0;0],1),{inx,iny})
hold on, plot(inx,repmat(linspace(iny(1),iny(2),11),2,1),'r')
view([25,20]),axis off, hold off

'tp00' , =centers(:,j), j=1:n-3
with 

'tp10' , =centers(:,j), j=1:n-1
with , and  the partial derivative of 

 wrto 

'tp01' , =centers(:,j), j=1:n-1
with , and  the partial derivative of 

 wrto 

'tp'
(default) 

, =centers(:,j), j=1:n
with 

ψj x( ) ϕ x cj– 2( )= cj
ϕ t( ) t log t( )=

ψn 2– x( ) x 1( )=
ψn 1– x( ) x 2( )=
ψn x( ) 1=

ψj x( ) ϕ x cj– 2( )= cj
ϕ t( ) D1t( ) tlog 1+( )= D1t

t t x( ) x cj– 2= = x 1( )

ψn x( ) 1=

ψj x( ) ϕ x cj– 2( )= cj
ϕ t( ) D2t( ) tlog 1+( )= D2t

t t x( ) x cj– 2= = x 2( )

ψn x( ) 1=

ψj x( ) ϕ x cj– 2( )= cj
ϕ t( ) t log t( )=

ψ x( ) x 2 x 2log=
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Example 2. We now also generate and plot, on the very same domain, the first 
partial derivative  of the thin-plate spline basis function, with respect to 
its second argument. 

inx = [-1.5 1.5]; iny = [0 1.2];
fnplt(stmak([0;0],[1 0],'tp01',{inx,iny}))
view([13,10]),shading flat,axis off

Note that, this time, we have explicitly set the basic interval for the stform.

The resulting figure, below, shows a very strong variation near the origin. This 
reflects the fact that the second derivatives of  have a logarithmic singularity 
there. 

See Also stcol

D2ψ

ψ
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10subplusPurpose Positive part

Syntax xp = subplus(x)

Description xp = subplus(x) returns , i.e., the positive part of x, which is x if x is 
nonnegative and 0 if x is negative. In other words, xp equals max(x,0). If x is 
an array, this operation is applied entry by entry.

Examples Example 1. Here is a plot of the essential part of the subplus function, as 
generated by

x = -2:2; plot(x,subplus(x),'linew',4), axis([-2,2,-.5,2.5])

Example 2. The following anonymous function describes the so-called hat 
function:

hat = @(x) subplus(x) - 2*subplus(x-1) + subplus(x-2);

i.e., the spline also given by spmak(0:2,1), as the following plot shows.

x = -.5:.5:2.5; plot(x,hat(x),'linew',4), set(gca,'Fontsize',16)

x( )+
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10titaniumPurpose Titanium test data

Syntax [x,y] = titanium

Description [x,y] = titanium returns measurements of a certain property of titanium as 
a function of temperature. Since their use in [1], these data have become a 
standard test for data fitting since they are hard to fit by classical techniques 
and have a significant amount of noise.

Examples The plot of the data shown below is generated by the following commands:

[x,y] = titanium; plot(x,y,'ok'), set(gca,'Fontsize',16) 

References [1] C. de Boor and J. R. Rice, Least squares cubic spline approximation II - 
Variable knots, CSD TR 21, Comp.Sci., Purdue Univ., April 1968.
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10tpapsPurpose Thin-plate smoothing spline

Syntax tpaps(x,y)
tpaps(x,y,p)
[...,p] = tpaps(...)

Description tpaps(x,y) is the stform of a thin-plate smoothing spline  for the given data 
sites x(:,j) and the given data values y(:,j). The x(:,j) must be distinct 
points in the plane, the values can be scalars, vectors, matrices, even 
ND-arrays, and there must be exactly as many values as there are sites.

The thin-plate smoothing spline  is the unique minimizer of the weighted sum

with  the error measure

and  the roughness measure

Here, the integral is taken over all of ,  denotes the sum of squares of all 
the entries of , and   denotes the partial derivative of  with respect to its 

th argument, hence the integrand involves second partial derivatives of . 
The smoothing parameter p is chosen so that (1-p)/p equals the average of the 
diagonal entries of the matrix A, with A + (1-p)/p*eye(n) the coefficient 
matrix of the linear system for the n coefficients of the smoothing spline to be 
determined. This choice of p is meant to ensure that we are in between the two 
extremes, of interpolation (when p is close to 1 and the coefficient matrix is 
essentially A) and complete smoothing (when p is close to 0 and the coefficient 
matrix is essentially a multiple of the identity matrix). This should serve as a 
good first guess for p.

tpaps(x,y,p) also inputs the smoothing parameter, p, a number between 0 
and 1. As the smoothing parameter varies from 0 to 1, the smoothing spline 
varies, from the least-squares approximation to the data by a linear polynomial 
when p is 0, to the thin-plate spline interpolant to the data when p is 1.

f

f

pE f( ) 1 p–( )R f( )+

E f( )

E f( ) =
j
∑ y(:,j) f x(:,j)( )– 2

R f( )

R f( ) = D1D1f 2 2 D1D2f 2 D2D2f 2+ +( )∫
R2 z 2

z Dif f
i f
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[...,p] = tpaps(...) also returns the smoothing parameter actually used.

Examples Example 1.  The following code obtains values of a smooth function at 31 
randomly chosen sites, adds some random noise to these values, and then uses 
tpaps to recover the underlying exact smooth values. To illustrate how well 
tpaps does in this case, the code plots, in addition to the smoothing spline, the 
exact values (as black balls) as well as each arrow leading from a smoothed 
value to the corresponding noisy value.

rand('seed',23); nxy = 31;
xy = 2*(rand(2,nxy)-.5); vals = sum(xy.^2);
noisyvals = vals + (rand(size(vals))-.5)/5;
st = tpaps(xy,noisyvals); fnplt(st), hold on
avals = fnval(st,xy);
plot3(xy(1,:),xy(2,:),vals,'wo','markerfacecolor','k')
quiver3(xy(1,:),xy(2,:),avals,zeros(1,nxy),zeros(1,nxy), ...
         noisyvals-avals,'r'), hold off

Example 2.  The following code uses an interpolating thin-plate spline to 
vector-valued data values to construct a map, from the plane to the plane, that 
carries the unit square  pretty much onto the unit disk 

, as shown by the picture generated.

n = 64; t = linspace(0,2*pi,n+1); t(end) = [];
values = [cos(t); sin(t)];
centers = values./repmat(max(abs(values)),2,1);
st = tpaps(centers, values, 1);

x : x j( ) 1 j=1:2,≤{ }
x : x 1( )2 x 2( )2 1≤+{ }
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fnplt(st), axis equal

Note the choice of 1 for the smoothing parameter here, to obtain interpolation.

Limitations The determination of the smoothing spline involves the solution of a linear 
system with as many unknowns as there are data points. Since the matrix of 
this linear system is full, the solving can take a long time even if, as is the case 
here, an iterative scheme is used when there are more than 728 data points. 
The convergence speed of that iteration is strongly influenced by p, and is 
slower the larger p is. So, for large problems, use interpolation, i.e., p equal to 1, 
only if you can afford the time.

See Also csaps, spaps
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The Glossary consists of these sections:

Introduction (p. A-2) Description of the material covered in this glossary

List of Terms (p. A-3) Terms and definitions presented in order such that the explanation of 
each term only uses terms discussed earlier
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Introduction
This glossary provides brief definitions of the basic mathematical terms and 
notation used in this guide. But, in contrast to standard glossaries, the terms 
do not appear here in alphabetical order. This is not much of a disadvantage 
since the glossary is quite short (and all the terms appear in the Index in any 
case). The order is carefully chosen to have the explanation of each term only 
use terms discussed earlier.

In this way, you may, the first time around, choose to read the entire glossary 
from start to finish, for a cohesive introduction to these terms.
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List of Terms

Intervals
Since MATLAB® uses the notation [a,b] to indicate a matrix with the two 
columns, a and b, we use in this guide the notation [a .. b] to indicate the closed 
interval with endpoints a and b. We do the same for open and half-open 
intervals. For example, [a .. b) denotes the interval that includes its left 
endpoint, a, and excludes its right endpoint, b. 

Vectors
A d-vector is a list of d real numbers, i.e., a point in Rd. In MATLAB®, a d-vector 
is stored as a matrix of size [1,d], i.e., as a row-vector, or as a matrix of size 
[d,1], i.e., as a column-vector. In the Spline Toolbox™, vectors are column 
vectors.

Functions
In this toolbox, the term function is used in its mathematical sense, and so 
describes any rule that associates, to each element of a certain set called its 
domain, some element in a certain set called its target. Common examples in 
this toolbox are polynomials and splines. But even a point x in Rd, i.e., a 
d-vector, may be thought of as a function, namely the function, with domain the 
set {1,...,d} and target the real numbers R, that, for i=1:d, associates to i the 
real number x(i).

The range of a function is the set of its values.

We distinguish between scalar-valued, vector-valued, matrix-valued, and 
ND-valued functions. Scalar-valued functions have the real numbers R (or, 
more generally, the complex numbers) as their target, while d-vector-valued 
functions have Rd as their target; if, more generally, d is a vector of positive 
integers, then d-valued functions have the d-dimensional real arrays as their 
target. We also distinguish between univariate and multivariate functions. 
The former have some real interval, or, perhaps, all of R as their domain, while 
m-variate functions have some subset, or perhaps all, of Rm as their domain.

Placeholder notation
If f  is a bivariate function, and y is some specific value of its second variable, 
then
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is the univariate function whose value at x is f(x,y).

Curves and surfaces vs. functions
In this toolbox, the term function usually refers to a scalar-valued function. A 
vector-valued function is called here a:

curve if its domain is some interval

surface if its domain is some rectangle

To be sure, to a mathematician, a curve is not a vector-valued function on some 
interval but, rather, the range of such a (continuous) function, with the 
function itself being just one of infinitely many possible parametrizations of 
that curve.

Tensor products
A bivariate tensor product is any weighted sum of products of a function in the 
first variable with a function in the second variable, i.e., any function of the 
form

More generally, an m-variate tensor product is any weighted sum of products 
 of m univariate functions.

Polynomials
A univariate scalar-valued polynomial is specified by the list of its polynomial 
coefficients. The length of that list is the order of that polynomial, and, in this 
toolbox, the list is always stored as a row vector. Hence an m-list of polynomials 
of order k is always stored as a matrix of size [m,k].

The coefficients in a list of polynomial coefficients are listed from “highest” to 
“lowest”, to conform to the MATLAB® convention, as in the command 
polyval(a,x). To recall: assuming that x is a scalar and that a has k entries, 
this command returns the number

f . y,( )

f x y,( ) a i j,( )gi x( )hj y( )
j

∑
i

∑=

g1 x1( )g2 x2( )…gm xm( )

a 1( )x
k 1–

a 2( )x
k 2– … a k 1–( )x

1
a k( )+ + + +
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In other words, the command treats the list a as the coefficients in a power 
form. For reasons of numerical stability, such a coefficient list is treated in this 
toolbox, more generally, as the coefficients in a shifted, or, local power form, for 
some given center c. This means that the value of the polynomial at some point 
x is supplied by the command polyval(a,x-c).

A vector-valued polynomial is treated in exactly the same way, except that now 
each polynomial coefficient is a vector, say a d-vector. Correspondingly, the 
coefficient list now becomes a matrix of size [d,k].

Multivariate polynomials appear in this toolbox mainly as tensor products. 
Assuming first, for simplicity, that the polynomial in question is scalar-valued 
but m-variate, this means that its coefficient “list” a is an m-dimensional array, 
of size [k1,...,km] say, and its value at some m-vector x is, correspondingly, 
given by

for some “center” c.

Piecewise-polynomials
A piecewise-polynomial function refers to a function put together from 
polynomial pieces. If the function is univariate, then, for some strictly 
increasing sequence , and for i=1:l, it agrees with some 
polynomial pi on the interval . Outside the interval , its 
value is given by its first, respectively its last, polynomial piece.The  are its 
breaks. All the multivariate piecewise-polynomials in this toolbox are tensor 
products of univariate ones.

B-splines
In this toolbox, the term B-spline is used in its original meaning only, as given 
to it by its creator, I. J. Schoenberg, and further amplified in his basic 1966 
article with Curry, and used in PGS and many other books on splines. 
According to Schoenberg, the B-spline with knots tj, ..., tj+k is given by the 
following somewhat obscure formula (see, e.g., IX(1) in PGS):

…

i1 1=

k1

∑ a i1,...,im( ) x i1( ) c i1( )–( )k1 i1– … x im( ) c im( )–( )km im–

im 1=

km

∑

ξ1
… ξl 1+< <

[ξi..ξi 1+ ) [ξ1..ξl 1+ )
ξi

Bj k, x( ) B x tj …, tj k+,( ) tj k+ tj–( ) tj …, tj k+,[ ] x .–( )+
k 1–==
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To be sure, this is only one of several reasonable normalizations of the B-spline, 
but it is the one used in this toolbox. It is chosen so that

 

But, instead of trying to understand the above formula for the B-spline, look at 
the reference pages for the GUI bspligui for some of the basic properties of the 
B-spline, and use that GUI to gain some first-hand experience with this 
intriguing function. Its most important property for the purposes of this toolbox 
is also the reason Schoenberg used the letter B in its name:

Every space of (univariate) piecewise-polynomials of a given order has a Basis 
consisting of B-splines.

Splines
Consider the set 

of all (scalar-valued) piecewise-polynomials of order k with breaks 
 that, for i=2:l, may have a jump across  in its th derivative 

but have no jump there in any lower order derivative. This set is a linear space, 
in the sense that any scalar multiple of a function in S is again in S, as is the 
sum of any two functions in S.

Accordingly, S contains a basis (in fact, infinitely many bases), that is, a 
sequence f1,...,fn so that every f in S can be written uniquely in the form

for suitable coefficients aj. The number n appearing here is the dimension of 
the linear space S. The coefficients aj are often referred to as the coordinates of 
f with respect to this basis.

In particular, according to the Curry-Schoenberg Theorem, our space S has a 
basis consisting of B-splines, namely the sequence of all B-splines of the form 

, j=1:n, with the knot sequence t obtained from the break 
sequence ξ and the sequence μ by the following recipe:

• have both  and  occur in t exactly k times

Bj k, x( ) 1,=
j 1=
n

∑ tk x tn 1+≤ ≤

S := Π
μ

ξ k,

ξ1
… ξl 1+< < ξi μi

f x( ) fj x( )ajj 1=
n

∑=

B . tj …, tj k+,( )

ξ1 ξl 1+
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• for each i=2:l, have  occur in t exactly  times

• make sure the sequence is nondecreasing and only contains elements from 

Note the correspondence between the multiplicity of a knot and the smoothness 
of the spline across that knot. In particular, at a simple knot, that is a knot that 
appears exactly once in the knot sequence, only the (k-1)st derivative may be 
discontinuous.

Rational splines
A rational spline is any function of the form r(x) = s(x)/w(x), with both s and w 
splines and, in particular, w a scalar-valued spline, while s often is 
vector-valued. In this toolbox, there is the additional requirement that both s 
and w be of the same form and even of the same order, and with the same knot 
or break sequence. This makes it possible to store the rational spline r as the 
ordinary spline R whose value at x is the vector [s(x);w(x)]. It is easy to obtain 
r from R. For example, if v is the value of R at x, then v(1:end-1)/v(end) is 
the value of r at x. As another example, consider getting derivatives of r from 
those of R. Since s = wr, Leibniz’ rule tells us that 

Hence, if v(:,j) contains Dj-1R(x), j=1:m+1, then

provides the value of .

Thin-plate splines
A bivariate thin-plate spline is of the form

ξi k μi–
ξ

Dms
m
j⎝ ⎠

⎛ ⎞ DjwDm j– r

j 0=

m

∑=

v(1:end-1,m+1)
m

j⎝ ⎠
⎛ ⎞

j 1=

m

∑ v(end,j+1)*v(1:end-1,j+1)–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

v(end,1)⁄
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

DmR x( )

f x( ) ϕ x cj– 2( )aj

j 1=

n 3–

∑= x 1( )an 2– x 2( )an 1– an ,+ + +
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with  a univariate function, and  denoting the Euclidean 
length of the vector y. The sites cj are called the centers, and the radially 
symmetric function  is called the basis function, of this 
particular stform.

Interpolation
Interpolation is the construction of a function f  that matches given data values, 
yi, at given data sites, xi, in the sense that f(xi) = yi, all i.

The interpolant, f, is usually constructed as the unique function of the form 

 

that matches the given data, with the functions fj chosen “appropriately”. Many 
considerations might enter that choice. One of these considerations is sure to 
be that one can match in this way arbitrary data. For example, polynomial 
interpolation is popular since, for arbitrary n data points (xi,yi) with distinct 
data sites, there is exactly one polynomial of order n that matches these data. 
This says that choosing the fj in the above “model” to be fj(x) = xj-1, j=1:n, 
guarantees exactly one such interpolant to arbitrary n data points with distinct 
data sites.

In spline interpolation, one chooses the fj to be the n consecutive B-splines Bj(x) 
= B(x|tj,...,tj+k), j=1:n, of order k for some knot sequence . 
For this choice, we have the following important theorem.

Schoenberg-Whitney Theorem
Let x1<x2 < < xn. For arbitrary corresponding values yi, i=1:n, there exists 
exactly one spline f of order k with knot sequence tj, j=1:n+k, so that 

 if and only if the sites satisfy the Schoenberg-Whitney 
conditions of order k with respect to that knot sequence t, namely 

with equality allowed only if the knot in question has multiplicity k, i.e., 
appears k times in t. In that case, the spline being constructed may have a jump 
discontinuity across that knot, and it is its limit from the right or left at that 
knot that matches the value given there.

φ t( ) := t tlog y

ψ x( ):=ϕ x 2( )

f x( ) fj x( )aj
j

∑=

t1 t2
… tn k+≤ ≤ ≤

…

f xi( ) yi= i 1:n=,

ti xi ti k+ ,≤ ≤ i 1:n,=



List of Terms

A-9

Least-squares approximation
In least-squares approximation, the data may be matched only approximately. 
Specifically, the linear system

is solved in the least-squares sense. In this, some weighting is involved, i.e., the 
coefficients aj are determined so as to minimize the error measure

for certain nonnegative weights wi at the user’s disposal, with the default being 
to have all these weights the same.

Smoothing
In spline smoothing, one also tries to make such an error measure small, but 
tries, at the same time, to keep the following roughness measure small,

with  a nonnegative weight function that is usually just the constant function 
1, and Dm f the mth derivative of f. The competing claims of small E(f) and 
small F(Dm f) are mediated by a smoothing parameter, for example, by 
minimizing

for some choice of  or of p, and over all f for which this expression makes 
sense.

Remarkably, if the roughness weight  is constant, then the unique minimizer 
f is a spline of order 2m, with knots only at the data sites, and all the interior 
knots simple, and with its derivatives of orders m,...,2m-2 equal to zero at the 
two extreme data sites, the so-called “natural” end conditions. The larger the 
smoothing parameter  or  used, the more closely f matches the 
given data and the larger is its mth derivative.

f xi( ) fj xi( )aj yi,=
j

∑= i 1:n,=

E f( ) wi yi f xi( )– 2

i
∑=

F Dmf( ) λ x( ) Dmf x( )
2

xd

x1

xn

∫=

λ

ρE f( ) F Dmf( ) or pE f( ) 1 p–( )F Dmf( )++

ρ

λ

ρ 0≥ p [0 .. 1]∈
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For data values yi at sites ci in the plane, one uses instead the error measure 
and roughness measure

and, correspondingly, the minimizer of the sum  is not a 
polynomial spline but a thin-plate spline. 

Note that the unique minimizer of  for given  is also 
the unique minimizer of  for  
and vice versa.

2D, 3D, ND
Terms such as ‘a 2D problem’ or ‘a 3D problem’ are not used in this toolbox, 
because they are not well defined. A 2D problem might involve data points in 
the plane, such as (i) points on some curve, or else (ii) points on the graph of 
some function, or (iii) it might involve data sites in the plane. If it is (i), then 
we are talking about constructing a spline curve, i.e., a vector-valued spline 
function, if it is (ii) a scalar-valued spline function, of one variable in both cases. 
If it is (iii), then we are talking about constructing a bivariate scalar-valued 
spline function. A ‘3D problem’ is similarly ambiguous. It could involve a curve, 
a surface, a function of three variables, ... . Better to classify problems by the 
domain and target of the function(s) to be constructed.

Almost all the spline construction commands in this toolbox can deal with 
ND-valued data, meaning that the data values are ND-arrays. If d is the size 
of such an array, then we also call them d-valued.

E f( ) yi f ci( )– 2,

i

∑= F D2f( ) D11f 2 2 D12f 2 D22f 2+ +( )∫=

ρE f( ) F D2f( )+

ρE f( ) F D2f( )+ 0 ρ ∞< <
pE f( ) 1 p–( )F D2f( )+ p ρ 1 ρ+( )⁄ (0 .. 1)∈=
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almost block-diagonal 10-11
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use 10-90
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aptknt 10-7
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use 2-15, 5-7, 9-11, 9-14, 9-19, 9-21, 10-22
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B
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for the B-form 10-108
for the pp-form 4-3
of B-form 5-3
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basis function

(Overview) 3-10
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basis map 9-3
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biarc 10-75, 10-77
bias 9-23
bicubic spline example 2-16, 10-20
bivariate 1-3
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boundary layer 9-11
break

example 4-4
in ppform 4-2
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vs knot 5-7

break sequence
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example 4-4, 10-70
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B-representation 1-2
brk2knt 10-12
bspligui 10-13
B-spline

(Glossary) A-5
coefficients 9-9
example 10-106, 10-109
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in spcol 10-90
in spcrv 10-93
normalized 3-5
of order k 3-5
some sample figures 5-4
support of 3-7
via bspline 10-15
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C
CAGD 7-7
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centers 8-2
centripetal 10-29
chbpnt 10-16
Chebyshev polynomial 9-13
Chebyshev spline 9-13
circle, spline approximation to 5-11
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clamped end condition 10-18
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in spcol 10-90
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constructed in spcol 10-90
use in spapi 10-86

use 9-7
collocation matrix

in stcol 10-111
column-vector 1-6
composing function with a matrix 10-36
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control point

example 5-10
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of a spline function 10-10
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example 7-8
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use 9-15

conversion
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via splpp,sprpp 10-106

coordinates with respect to a basis A-6
csape 10-18
csapi 10-22

example 10-56
use 10-53

csaps 10-24
cscvn 10-29
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cubic
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example 5-4

Hermite 10-9
smoothing spline 3-8
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example 9-13
cubic means order 4 5-2
cubic smoothing spline
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cubic spline

via spap2 10-82
via spapi 10-85

cubic spline curve
via cscvn 10-29

cubic spline interpolation 10-18
via csapi 10-22

Curry-Schoenberg Theorem A-6
curvature 5-10
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finding point on 2-14
plotted via fnplt 10-48
via spmak 10-109
vs function A-4

D
data point A-8
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in spapi 10-84

data site A-8
data value A-8
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degrees of freedom 9-8
derivative

of a rational spline A-7
differential equation

non-standard 10-90
differentiation

discrete 10-65
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dimension A-6
discrete

differentiation 10-65
least-squares approximation 9-19

domain of a function A-3
draftsman’s spline 3-3
dual functional 3-7

use in fn2fm 10-31
d-valued A-3
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end

break 4-3
knot 5-3

end conditions 10-18
clamped 10-19
complete 10-19
curved 10-19
Lagrange 10-19
natural 10-19
not-a-knot 10-18
other 10-20
variational 10-19

equidistribute 10-65
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in spaps 10-87
in splinetool 10-104
in tpaps 10-118

error weight A-9
evaluation

of tensor product spline 9-18
simultaneous 10-56



Index

Index-4

via fnval 10-55
extension beyond basic interval

B-form 5-3
cautionary note 10-31
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via fnxtr 10-57

extrapolation 10-57

F
fn2fm 10-30
fnbrk 10-32

use 9-15, 9-20, 9-26
fnchg 10-35
fncmb 10-36

use 2-16, 10-20
fnder 10-39

use 9-15, 10-20
fndir 10-41
fnint 10-43

vs fnder 10-39
fnjmp 10-45
fnmin 10-46
fnplt 10-48

use 2-13, 2-14, 9-14, 10-29
vs spcrv 10-93

fnrfn 10-50
fntlr 10-51
fnval 10-55

use 9-16, 9-22, 9-23, 10-20
fnxtr 10-57

use 9-5
fnzeros 10-59
franke 9-18, 10-62
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picture 9-21
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functional

dual 3-7

G
Gauss points 9-8
getcurve 10-63
good interpolation sites

from chbpnt 10-16
from Chebyshev spline 9-13
via aveknt 10-10

graphic accuracy 9-17
Greville site 5-12
gridded data

example 2-16, 9-18
smoothing 10-88

H
hat function 10-116
helix 10-74
Hermite

cubics 10-9
Hermite interpolation 10-75, 10-84

I
implicit 1-2
integral

definite 2-13
indefinite 10-43

integral equation 1-2
integration 10-39
interior

break 4-3
knot 5-3

interpolant
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variational
via csaps 10-24
via spaps 10-88

interpolation A-8
by thin-plate spline 10-119
Hermite 2-15, 10-84
optimal 10-66
via cscvn 10-29
via spapi 10-84
via spaps 10-88

interpolation points, good 10-10
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J
jump

allow for 5-7
ignored in fnder 10-40
in derivative 3-6

K
knot 2-7

average
use 9-14
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used in fn2fm 10-31
used in spcrv 10-93
used in splpp 10-106

interior 9-19
multiplicity 10-49

at endpoints 5-7
cautionary note 10-49
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improved 10-65
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in spcol 10-90
of a spline (Glossary) A-6
optimal 10-66

simple (Glossary) A-7
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conversion 5-7
knt2brk 10-64
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Lagrange end condition 10-20
least-squares

approximation
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by "natural" cubic splines 9-2
discrete
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via slvblk 10-79

via spap2 10-81
via spline 9-6

in csaps 10-24
in spaps 10-88

limit from the left
in splpp 10-106
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linear

combination of functions 10-36
dependence 9-26
operations 10-36
space A-6

local
polynomial coefficients 3-4
power form
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maximum

via fnmin 10-46
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minimize 3-8
minimum

via fnmin 10-46
Moebius 6-6
multiplicity

in a sequence 10-64
of a data point 10-84
of a knot 3-6, 9-7
of smoothness conditions 9-7
vs smoothness

example 9-7
in bspligui 10-13
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multivariate 6-2
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overview 3-9
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noise 3-8
noisy 2-10
nonlinear system

example 9-11
in optknt 10-67
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stcol 10-111
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